The aim of this study was to assess the effect of type 1 diabetes mellitus (DM) on the structure of mandibular bone and on the changes of alveolar/jaw bone formation. Experimental DM was induced in 3-wk-old male Wistar rats by a single dose of 60 mg/kg body weight of streptozotocin. All rats were injected with calcein on days 21 and 28. The rats were killed when 8 wk of age. Bone structure was analyzed by bone histomorphometry, microcomputed tomography (micro-CT), and histological section. Histomorphometric analysis showed that the mineral apposition and the bone formation rates in most of the mandibular regions were significantly decreased in the DM group compared with the control group. Micro-CT analysis showed significant deterioration of the bone quality in rats with DM. For a histometric measure of bone resorption, the number of osteoclasts along the distal surface of the alveolar wall was counted. The number of osteoclasts was significantly lower in the rats with DM than in the controls. These findings suggest that uncontrolled DM decreases mandibular bone formation, reduces the rate of bone turnover in the alveolar wall surrounding the root, and affects the quality of bone structure resulting in retardation of its skeletal development.
Glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP‑1R) are incretin receptors that play important roles in regulating insulin secretion from pancreatic β cells. Incretin receptors are also thought to play a potential role in bone metabolism. Osteoblasts in animals and humans express GIPR; however, the presence of GLP-1R in these cells has not been reported to date. Thus, the aim of this study was to determine whether GLP-1R and GIPR are expressed in osteoblastic cells, and whether their expression levels are regulated by the extracellular glucose concentration. Mouse osteoblastic MC3T3-E1 cells were cultured in medium containing normal (5.6 mM) or high (10, 20 or 30 mM) glucose concentrations, with or without bone morphogenetic protein-2 (BMP-2). RT-PCR, western blot analysis and immunofluorescence were carried out to determine GIPR and GLP-1R mRNA and protein expression levels. Cell proliferation was also assessed. The GLP-1R and GIPR mRNA expression levels were higher in the MC3T3-E1 cells cultured in medium containing high glucose concentrations with BMP-2 compared with the cells cultured in medium containing normal glucose concentrations with or without BMP-2. GLP-1R protein expression increased following culture in high-glucose medium with BMP-2 compared with culture under normal glucose conditions. However, the cellular localization of GLP-1R was not affected by either glucose or BMP-2. In conclusion, our data demonstrate that the expression of GLP-1R and GIPR is regulated by glucose concentrations in MC3T3-E1 cells undergoing differentiation induced by BMP-2. Our results reveal the potential role of incretins in bone metabolism.
Findings in the present study suggest that nasal obstruction might have significant influences on the gustatory function via morphologic change in the taste papillae and taste buds in tongue area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.