The Vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 14-kDa protein that prevents cell proliferation by causing arrest in the G2/M phase of the cell cycle. Here we report the first evidence that Vpr activates the expression and transcription of the cyclin-dependent kinase inhibitor p21/Waf1/Cip1 (hereafter p21), an inhibitor of the G1 and G2/M phase transitions in T lymphoid and myeloid cells. Vpr activated p21 protein expression in a dose-dependent manner. Vpr also caused a three- to eightfold induction of the p21 promoter. This induction was dose- and time-dependent and was comparable to levels of p21 induction induced by p53. Of note, Vpr activated p21 transcription in endogenous p53 positive cells, but not in p53-deleted or p53 nonfunctional cells. Vpr and p53 had an additive effect on p21 transcription. Mutational analysis indicated that wt Vpr, but not cell cycle inactive Vpr mutants, activated the p21 promoter. These data demonstrate that HIV-1 Vpr utilizes the cyclin-dependent kinase inhibitor p21, in addition to cdc2, to arrest cells in G2/M.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzymelinked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the production of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.