Composite of rice husk and asphalt silica was carried out at a ratio of 1: 0.7; 1: 0.8 and 1: 0.9 and heated at 150oC for 3 hours. The characteristics of the phase structure, microstructure, and functional groups were analyzed using X-ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Fourier Transform Infrared (FTIR), physical properties analysis (density, porosity) and mechanics (compressive strength). The XRD results showed that the phase in asphalt silica composites detected amorphous carbon at 2θ = 18º and amorphous silica with the amorphous silica peak shifted from 2θ = 22º to 2θ = 20º. Microstructure analysis shows that cracks and clusters are bigger with grain sizes of 7,742 µm, 8,495 µm and 10,921 µm respectively, and the sample composition shows percentage of silicon (Si), Oxygen (O) and sodium (Na), respectively. decreases and the percentage of carbon (C), sulfur (S) increases. The results of FTIR show that the functional groups of Si-OH, Si-O-Si and Si-O bonds are decreasing and the functional groups of C-H bonds are increasing. The addition of asphalt causes the value of density increases, the value of porosity and compressive strength decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.