A carbon nanotube transistor array was used to detect DNA hybridization. A new approach to ensure specific adsorption of DNA to the nanotubes was developed. The polymer poly (methylmethacrylate(0.6)-co-poly(ethyleneglycol)methacrylate(0.15)-co-N-succinimidyl methacrylate(0.25)) was synthesized and bonded noncovalently to the nanotube. Aminated single-strand DNA was then attached covalently to the polymer. After hybridization, statistically significant changes were observed in key transistor parameters. Hybridized DNA traps both electrons and holes, possibly caused by the charge-trapping nature of the base pairs.
A highly efficient room‐temperature synthetic route to bioconjugable polymeric nanoparticles in the 5–20 nm size range based on single‐chain intramolecular click cycloaddition is described. It is illustrated by preparing single‐chain cross‐linked polymeric NPs from poly[MMA‐co‐(3‐azidopropyl methacrylate)‐co‐(3‐trimethylsilyl‐propyn‐1‐yl methacrylate)] terpolymers using a one‐pot procedure and a continuous addition technique. For polymeric NPs with an excess of azide groups, aminoacid/PMMA NPs were easily obtained by performing a second click reaction with propargyl glycine. This versatile and general method opens the way to the synthesis of other kinds of polymeric and bioconjugated NPs beyond those reported in this communication.magnified image
The synthesis of polymer nanoparticles (NPs) with controlled characteristics has become an appealing research topic lately. Nanomedicine, and especially drug delivery and imaging, are fields that require particles of a controlled size and with a tailored arrangement of functional groups. Intramolecular cross-linking or collapse of single polymer chains has emerged as an efficient alternative for the synthesis of well-defined polymer NPs. This technique allows the generation of 1.5-20 nm particles with a wide variety of chemical compositions and functionalities. This review begins by gathering synthetic strategies described in the literature and groups them into four main synthetic methods: homo-functional collapse, hetero-functional collapse, crosslinker-mediated collapse, and one-block collapse of diblock or triblock copolymers. Afterwards, the main characterization techniques and physical properties of single-chain polymer NPs (SCPNs) are exposed. Finally, several applications in nanomedicine are mentioned followed by some future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.