Maize grain is an important source of human and animal feed, and its quality can be affected by management practices and climatic conditions. This study aimed to evaluate the concentration and composition of starch, protein and oil in grain of maize cultivars in response to different planting dates (20 June and 21 July), irrigation (12-day and 6-day intervals) and nitrogen rates (0 and 184 kg N ha−1). The first two principal components (PCs) accounted for 84.5% of the total variation. High N fertilization increased protein (by 6.0 and 10.9 g kg−1) and total nonessential amino acids (by 3.4 and 2.4 g kg−1) during 2018 and 2019, respectively. With the high irrigation rate, the high N rate increased oil, total unsaturated fatty acids, and starch and amylopectin, whereas with the low irrigation rate, there was no effect of the N rate. With earlier planting, total saturated fatty acids were higher. The findings highlight the complicated relationship between the different factors and how they affect quality characteristics of maize grain. There was a large impact of year, which to a great extent cannot be controlled, even in this environment where water supply was controlled and rainfall did not affect the results.
This study investigated the induction and loss of dormancy in oilseed rape (Brassica napus). Twenty genotypes were preliminary screened; from these, two genotypes, RGS003 and Hayola 308, which possess high potential for dormancy induction (HSD) and medium potential to induce secondary dormancy (MSD), were selected. The stratification of seeds at alternating temperatures of 5–30°C (in dark) significantly relieved secondary dormancy, but dormancy was not fully released. The ψb(50) values were −1.05 and −1.06 MPa for the MSD and the HSD before dormancy induction. After inducing dormancy, the ψb(50) values for the MSD and the HSD were increased to −0.59 and −0.01 on day 0 stratification at 20°C. The hydrothermal time (θHT) value was low for one-day stratification for HSD in comparison with other stratification treatments. Water stress can induce dormancy (if the seeds have the genetic potential for secondary dormancy) and warm stratification (in dark) can only reduce the intensity of dormancy. The seeds with a high potential of dormancy induction can overcome dormancy at alternating temperatures and in the presence of light. It can, therefore, be concluded that a portion of seeds can enter the cycle of dormancy ↔ non-dormancy. The secondary dormant seeds of B. napus cannot become non-dormant in darkness, but the level of dormancy may change from maximum (after water stress) to minimum (after warm stratification). It seems that the dormancy imposed by the conditions of deep burial (darkness in combination with water stress and more constant temperatures) might be more important to seed persistence than secondary dormancy induction and release. The dormancy cycle is an important pre-requisite in order to sense the depth of burial and the best time for seed germination.
A 90-day study conducted to explore the potential of epigeic earthworms Eisenia foetida and Eisenia andrei to transform the different types of agricultural wastes and spent mushroom compost into value-added product, i.e., vermicompost. Vermicomposting resulted in significant reduction in C:N ratio, pH, electrical conductivity, total organic carbon, TK; and increase in total Kajeldahl nitrogen, TP, and various micro and macronutrients compared to those in the worm feed. Our trials demonstrated that the vermicomposting could be considered as an alternate technology for recycling and environmentally safe disposal/management of the mushroom cultivation complexes' residues mixed with different types of agricultural waste using epigeic earthworms E. foetida and E. andrei.
Germination timing is an important determinant of survival and niche breadth of plants. The annual plant Nigella sativa occurs in diverse environments along a steep temperature gradient and thus is a suitable model for the study of germination behavior in response to temperature. We used a modeling approach to compare the germination thermal niche of seeds of nine populations of N. sativa produced in a common
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.