Marrow stroma cells (MSC) play a major role in osteogenesis. The potential of the MSC to differentiate to bone-forming cells relies upon molecular regulation. This study analyzed MBA-15 cells for the expression of genes and proteins that are key regulators of osteoblast differentiation. These cells express Cbfa1 and c-fos transcription factors (TF) of osteoprogenitor proliferating cells. RT-PCR and immunohistochemistry were used to demonstrate the message and protein expression of extracellular matrix proteins that are a prerequisite for matrix formation and mineralization, including alkaline phosphatase (ALP), osteocalcin, osteopontin, biglycan, and bone sialoprotein (BSP). The activity of ALP was correlated at various cell densities with co-expression of osteocalcin or osteopontin. Adhering cells must attach to the appropriate matrix to enable survival and differentiation. Using attachment assays, we demonstrated that MBA-15 cells adhered to collagenous matrix and the effect on survival measured by changes in intracellular calcium (Ca) levels. The cells' adhesion to matrix is mediated via cell surface molecules. We quantified the expression of cells surface molecules that are important players in mediating cell-matrix interaction. Flow cytometry analysis (FACS) was used to determine the expression of CD-31 (36%), and lower levels were identified for CD-62E and CD11b. In summary, the present study demonstrates the expression of molecular markers that are distinctive for the osteoblastic phenotype in MBA-15 marrow stroma cells and have crucial role in cell-matrix interaction, in establishing the cellular osteogenic phenotype and their survival.
We describe a novel human gene, named SEL-OB/SVEP1, expressed by skeletal tissues in vivo and by cultured osteogenic cells. The mRNA expression was analyzed on frozen tissues retrieved by laser-capture microscope dissection (LCM) and was detected in osteogenic tissues (periosteum and bone) but not in cartilage or skeletal muscle. The SEL-OB/SVEP1 cDNA of 11,139 bp was in silico translated into a 3574AA protein with expected molecular weight of 370 kDa. The protein is composed of multiple domains including complement control protein (CCP) modules with selectin superfamily signature; sushi and other domains, such as vWA, EGF, PTX, and HYR. Stromal osteogenic cells were analyzed for the protein expression using anti-SEL-OB/SVEP1 for immuno-precipitation and Western blot application confirm the presence of high molecular weight protein. Immuno-histochemistry and fluorescence-activated cell sorting (FACS) were applied to detect SEL-OB/SVEP1 on the surface of stromal cells. ELISA quantified the dependence of protein expression on cell density. Bioinformatic analysis of SEL-OB/SVEP1 revealed domains compositions recognized in cell surface molecules and suggested its role in cell adhesion. Analysis of mesechymal osteogenic cells' adhesion in presence of anti-SEL-OB/SVEP1 antibody demonstrated its interference with initial adhesion stages. In summary, present study describes novel SEL-OB/SVEP1 protein with a unique composition of functional domains, restricted pattern of expression in skeletal cells and demonstrated involvement in attachment of mesenchymal cells. The unusual composition of functional domains puts SEL-OB/SVEP1 in the discrete new group of membrane proteins involved in cell adhesion processes. All together makes SEL-OB/SVEP1 an attractive marker for studying the role of stromal osteogenic cells and their interactions within the bone marrow microenvironment creating a network that regulates the skeletal homeostasis.
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.