This paper represents the result of the IAEG C35 Commission "Monitoring methods and approaches in engineering geology applications" workgroup aimed to describe a general overview of unmanned aerial vehicles (UAVs) and their potentiality in several engineering geology applications. The use of UAV has progressively increased in the last decade and nowadays started to be considered a standard research instrument for the acquisition of images and other information on demand over an area of interest. UAV represents a cheap and fast solution for the on-demand acquisition of detailed images of an area of interest and the creation of detailed 3D models and orthophoto. The use of these systems required a good background of data processing and a good drone pilot ability for the management of the flight mission in particular in a complex environment.
Commission I, WG I/VbKEY WORDS: UAV, Oblique Imagery, photogrammetry, SfM, point clouds, cultural heritage, architectural 3D models ABSTRACT:In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (e.g. including façades and building footprints). Expensive airborne cameras, installed on traditional aerial platforms, usually acquired the data. The purpose of this paper is to evaluate the possibility of acquire and use oblique images for the 3D reconstruction of a historical building, obtained by UAV (Unmanned Aerial Vehicle) and traditional COTS (Commercial Off-the-Shelf) digital cameras (more compact and lighter than generally used devices), for the realization of high-level-of-detail architectural survey. The critical issues of the acquisitions from a common UAV (flight planning strategies, ground control points, check points distribution and measurement, etc.) are described. Another important considered aspect was the evaluation of the possibility to use such systems as low cost methods for obtaining complete information from an aerial point of view in case of emergency problems or, as in the present paper, in the cultural heritage application field. The data processing was realized using SfM-based approach for point cloud generation: different dense image-matching algorithms implemented in some commercial and open source software were tested. The achieved results are analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation.
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and Exp Astron (2015) 39:405-421 calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
During the past years, UAVs (Unmanned Aerial Vehicles) became very popular as low-cost image acquisition platforms since they allow for high resolution and repetitive flights in a flexible way. One application is to monitor dynamic scenes. However, the fully automatic co-registration of the acquired multi-temporal data still remains an open issue. Most UAVs are not able to provide accurate direct image georeferencing and the co-registration process is mostly performed with the manual introduction of ground control points (GCPs), which is time consuming, costly and sometimes not possible at all. A new technique to automate the co-registration of multi-temporal high resolution image blocks without the use of GCPs is investigated in this paper. The image orientation is initially performed on a reference epoch and the registration of the following datasets is achieved including some anchor images from the reference data. The interior and exterior orientation parameters of the anchor images are then fixed in order to constrain the Bundle Block Adjustment of the slave epoch to be aligned with the reference one. The study involved the use of two different datasets acquired over a construction site and a post-earthquake damaged area. Different tests have been performed to assess the registration procedure using both a manual and an automatic approach for the selection of anchor images. The tests have shown that the procedure provides results comparable to the traditional GCP-based strategy and both the manual and automatic selection of the anchor images can provide reliable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.