During the last decades it has been shown that estrogen may have neuroprotective functions in the CNS. However, we have previously reported that pretreatment with estradiol abolishes its protection of cultured cerebellar granule neurons from glutamate-induced cell death due to down-regulation of endogenous glutathione. 17α-Estradiol is considered a hormonally inactive isomer of 17β-estradiol still containing its antioxidant potential. Here, we demonstrate that 17α-estradiol enhanced serum deprivation-induced cell death in the rat pheochromocytoma cell line PC-12, while antioxidants vitamins C and E in combination (vitamins C/E) tended to protect. We further examined mechanisms behind the glutathione lowering effect of 17α-estradiol in serum deprived PC-12 cells. Endogenous glutathione levels were reduced in the serum deprived cells. Serum deprivation-induced cell death seemed to depend partly on this reduction as supplemented N-acetylcysteine, a cysteine precursor with potential to restore glutathione levels, reduced cell death. 17α-Estradiol down-regulated glutathione, promoter activity of the rate-limiting enzyme in glutathione production, glutamate cysteine ligase (GCL), as well as c-Fos protein levels in serum deprived cells. The c-Fos transcription factor normally binds to the AP-1 response element in the GCL promoter resulting in increased production of glutathione as a stress response. Over-expression of AP-1 proteins partly restored the GCL promoter activity in serum deprived cells treated with 17α-estradiol. Nrf2, a transcription factor binding another response element in the GCL promoter was unaffected by 17α-estradiol. Conclusively, 17α-estradiol may have a long-term negative effect on the endogenous glutathione level through its ability to down-regulate the glutathione synthesis during serum deprivation.
17α-estradiol is a hormonally inactive isomer of 17β-estradiol, but with similar potency as neuroprotector. However, we have previously reported that pretreatment with high concentration (10 μM) of both estrogens abolishes their neuroprotection in rat cerebellar granule neurons. Here, we have examined neuroprotective properties of 17α-estradiol against glutamate-induced excitotoxicity in chicken cerebellar granule neurons using low (1 nM) and high concentration.17α-Estradiol, 1 nM, was neuroprotective when glutamate was administered after a pretreatment period of 24 h, but not when coadministered with glutamate. In contrast, 10 μM was protective when coadministered with glutamate, but was not efficient when glutamate was administered after a pretreatment period. The difference in protection was linked to a stronger calcium response during glutamate exposure in the non-protective treatments. In addition, the pretreatment period with 10 μM was accompanied by increased protein level of the N-methyl-d-aspartate receptor subunit NR2B and reduced glutathione level. Thus, 17α-estradiol has a concentration and time dependent protective effect against glutamate-induced cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.