The effect of dietary flavan-3-ols on the adhesion of potential probiotic lactobacilli strains to intestinal cells was unraveled. The inhibitory activity of these compounds on intestinal cells was highlighted. The cytotoxic effect was shown to depend on both the compound's chemical structure (galloylation and polymerization) and degree of differentiation of intestinal cells. The effect of flavan-3-ols on bacteria adhesion differed greatly between compounds, strains, and intestinal cells. All flavan-3-ols inhibited significantly Lactobacillus acidophilus LA-5 and Lactobacillus plantarum IFPL379 adhesion except epigallocatechin gallate, which enhanced L. acidophilus LA-5 adhesion to Caco-2. Procyanidins B1 and B2 increased remarkably the adhesion of Lactobacillus casei LC115 to HT-29 cells, whereas epigallocatechin increased L. casei LC115 adhesion to Caco-2. These data showed the potential of flavan-3-ols to alter gut microecology by modifying adhesion of lactobacilli strains to intestinal cells.
Aims: To investigate the effect of seven wine phenolic compounds and six oenological phenolic extracts on the growth of pathogenic bacteria associated with respiratory diseases (Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, Enterococcus faecalis, Streptococcus sp Group F, Streptococcus agalactiae and Streptococcus pneumoniae).
Methods and Results: Antimicrobial activity was determined using a microdilution method and quantified as IC50. Mor. catarrhalis was the most susceptible specie to phenolic compounds and extracts. Gallic acid and ethyl gallate were the compounds that showed the greatest antimicrobial activity. Regarding phenolic extracts, GSE (grape seed extract) and GSE‐O (oligomeric‐rich fraction from GSE) were the ones that displayed the strongest antimicrobial effects.
Conclusions: Results highlight the antimicrobial properties of wine phenolic compounds and oenological extracts against potential respiratory pathogens. The antimicrobial activity of wine phenolic compounds was influenced by the type of phenolic compounds. Gram‐negative bacteria were more susceptible than Gram‐positive bacteria to the action of phenolic compounds and extracts; however, the effect was species‐dependent.
Significance and Impact of Study: The ability to inhibit the growth of respiratory pathogenic bacteria as shown by several wine phenolic compounds and oenological extracts warrants further investigations to explore the use of grape and wine preparations in oral hygiene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.