Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Background: The Roussel Uclaf Causality Assessment Method (RUCAM) is a validated tool for assessing causality in cases of suspected drug-induced liver injury (DILI). However, RUCAM cannot discriminate between concomitant hepatotoxic drugs with the same temporal sequence.Objective: To analyse the utility of the lymphocyte transformation test (LTT) for assisting updated RUCAM in 45 patients and 40 controls with a clinical diagnosis of DILI.Methods: Suspected DILI cases were detected through the Prospective Pharmacovigilance Program from Laboratory Signals in Hospital (PPLSH) or by consultations. The controls completed the drug therapy with no adverse reactions during the study period. A receiver operating characteristics (ROC) curve analysis was performed to calculate the optimal cut-off value for the stimulation index (SI), corresponding to the largest sum for the specificity and sensitivity values of LTT for true DILI cases.Results: Out of 45 patients diagnosed with DILI, 42 cases were detected by the PPLSH, two cases by consultation and one case by both methods. Most DILI cases (64.4%) arose during hospitalization. According to the biochemical parameters, 24 cases (53.3%) had the hepatocellular phenotype, 14 (31.1%) had the cholestatic phenotype, and 7 cases (15.6%) had the mixed phenotype. Considering the severity criteria, 7 (15.5%) cases were classified as moderate DILI, and 4 (8.9%) were severe DILI; there were no fatal cases. A total of 149 drugs (median/case, 3; IQR, 2–5) were suspected to be involved in the DILI cases (RUCAM score ≥3). In 8 cases, only one drug was suspected, and polypharmacy (≥5 drugs) was identified in 29% of the cases. Of all DILI cases, 46 (30.9%) of the 149 suspected drugs produced positive LTT results, and the LTT was positive in 34 (75.5%) of the 45 patients. No exposed controls produced positive LTT results. The optimal cut-off of 1.95 for the SI was obtained with a sensitivity of 77% and specificity of 100% (area under the curve, 0.91; 95% asymptotic confidence interval 0.84–0.97; p < 0.001). The sensitivity of the hepatocellular phenotype was 92%.Conclusion: Our results demonstrate that LTT is an add on strengthening causality in cases of suspected idiosyncratic DILI, especially for patients with several suspected drugs and a hepatocellular phenotype.
Abstract5-Fluorouracil (5-FU) and oral fluoropyrimidines, such as capecitabine, are widely used in the treatment of cancer, especially gastrointestinal tumors and breast cancer, but their administration can produce serious and even lethal toxicity. This toxicity is often related to the partial or complete deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme, which causes a reduction in clearance and a longer half-life of 5-FU. It is advisable to determine if a DPD deficiency exists before administering these drugs by genotyping DPYD gene polymorphisms. The objective of this consensus of experts, in which representatives from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology participated, is to establish clear recommendations for the implementation of genotype and/or phenotype testing for DPD deficiency in patients who are candidates to receive fluoropyrimidines. The genotyping of DPYD previous to treatment classifies individuals as normal, intermediate, or poor metabolizers. Normal metabolizers do not require changes in the initial dose, intermediate metabolizers should start treatment with fluoropyrimidines at doses reduced to 50%, and poor metabolizers are contraindicated for fluoropyrimidines.
We evaluated in this randomised, double-blind clinical trial the efficacy of melatonin as a prophylactic treatment for prevention of SARS-CoV-2 infection among healthcare workers at high risk of SARS-CoV-2 exposure. Healthcare workers fulfilling inclusion criteria were recruited in five hospitals in Spain and were randomised 1:1 to receive melatonin 2 mg administered orally for 12 weeks or placebo. The main outcome was the number of SARS-CoV-2 infections. A total of 344 volunteers were screened, and 314 were randomised: 151 to placebo and 163 to melatonin; 308 received the study treatment (148 placebo; 160 melatonin). We detected 13 SARS-CoV-2 infections, 2.6% in the placebo arm and 5.5% in the melatonin arm (p = 0.200). A total of 294 adverse events were detected in 127 participants (139 in placebo; 155 in melatonin). We found a statistically significant difference in the incidence of adverse events related to treatment: 43 in the placebo arm and 67 in the melatonin arm (p = 0.040), and in the number of participants suffering from somnolence related to treatment: 8.8% (n = 14) in the melatonin versus 1.4% (n = 2) in the placebo arm (p = 0.008). No severe adverse events related to treatment were reported. We cannot confirm our hypothesis that administration of melatonin prevents the development of SARS-CoV-2 infection in healthcare workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.