We screened a series of antibodies for their exclusive binding to the human hair follicle bulge. In a second step these antibodies were to be used to identify basal keratinocytes and potential epithelial stem cells in the human epidermis and in engineered skin substitutes. Of all the antibodies screened, we identified only one, designated C8/144B, that exclusively recognized the hair follicle bulge. However, C8/144B-binding cells were never detected in the human epidermal stratum basale. In the bulge C8/144B-binding cells gave rise to cytokeratin 19-positive cells, which were also tracked in the outer root sheath between bulge and the hair follicle matrix. Remarkably, cytokeratin 19-expressing cells were never detected in the hair follicle infundibulum. Yet, cytokeratin 19-expressing keratinocytes were found in the epidermal stratum basale of normal skin as a subpopulation of cytokeratin 15-positive (not C8/144B-positive) basal keratinocytes. Cytokeratin 19/cytokeratin 15-positive keratinocytes decreased significantly with age. We suggest that cytokeratin 19-expressing cells represent a subpopulation of basal keratinocytes in neonates and young children (up to 1.5 years) that is particularly adapted to the lateral expansion of growing skin. Our data show that cytokeratin 19 in combination with cytokeratin 15 is an important marker to routinely monitor epidermal homeostasis and (at least indirectly) the self-renewing potential of engineered skin.
Initial take, development, and function of transplanted engineered tissue substitutes are crucially dependent on rapid and adequate blood perfusion. Therefore, the development of rapidly and efficiently vascularized tissue grafts is vital for tissue engineering and regenerative medicine. Here we report on the construction of a network of highly organotypic capillaries in engineered tissue substitutes. We employed a three-dimensional culture system consisting of human microvascular endothelial cells. These were reproducibly expanded at high purity and subsequently seeded into biodegradable, fibrin-based hydrogels. The process of capillary formation in vitro followed the principles of both angiogenesis and postnatal vasculogenesis and a distinct sequence of other developmental steps that closely resemble embryonic neovascularization. Capillary lumen formation in vitro was initiated by the deposition of a basement membrane and intensive pinocytosis, followed by the generation of intracellular vacuoles, successive fusion of these vacuoles, and finally the formation of a long, continuous lumen. After transplantation the vascular structures were stabilized by mural cells of the recipient animal. Our findings suggest that the in vitro engineering of prevascularized matrices is within reach.
Transgressive dune fi elds often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefi eld located in the central Gulf of Mexico, in order to assess the relationships between dunefi eld habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefi eld. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefi eld: defl ation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fi sh-scale shaped) dunefi elds and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (defl ation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial-tolerant species were dominant in the most mobile areas (blowouts and aklé dunefi eld and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.