Nanotechnology has recently emerged as a rapidly growing field with numerous biomedical science applications. At the same time, silver has been adopted as an antimicrobial material and disinfectant that is relatively free of adverse effects. Silver nanoparticles possess a broad spectrum of antibacterial, antifungal and antiviral properties. Silver nanoparticles have the ability to penetrate bacterial cell walls, changing the structure of cell membranes and even resulting in cell death. Their efficacy is due not only to their nanoscale size but also to their large ratio of surface area to volume. They can increase the permeability of cell membranes, produce reactive oxygen species, and interrupt replication of deoxyribonucleic acid by releasing silver ions. Researchers have studied silver nanoparticles as antimicrobial agents in dentistry. For instance, silver nanoparticles can be incorporated into acrylic resins for fabrication of removable dentures in prosthetic treatment, composite resin in restorative treatment, irrigating solution and obturation material in endodontic treatment, adhesive materials in orthodontic treatment, membrane for guided tissue regeneration in periodontal treatment, and titanium coating in dental implant treatment. Although not all authorities have acknowledged the safety of silver nanoparticles, no systemic toxicity of ingested silver nanoparticles has been reported. A broad concern is their potential hazard if they are released into the environment. However, the interaction of nanoparticles with toxic materials and organic compounds can either increase or reduce their toxicity. This paper provides an overview of the antibacterial use of silver nanoparticles in dentistry, highlighting their antibacterial mechanism, potential applications and safety in clinical treatment.
This review aims to investigate the clinical effectiveness of silver diamine fluoride (SDF) in arresting dental caries among children. A systematic search of publications was conducted with the key words "silver diamine fluoride," "silver diammine fluoride," "silver fluoride," "diamine silver fluoride," or "diammine silver fluoride" as well as their translation in Chinese,
Objective: To review the evidence regarding the mechanisms of silver diamine fluoride (SDF) for arresting caries. Methods: A literature search was conducted using the keywords silver diamine fluoride, and its alternative names, in seven databases: PubMed, Embase and Scopus (English); China National Knowledge Infrastructure (Chinese); Bilioteca Virtual em Saude (Portuguese); Biblioteca Virtual en Salud Espana (Spanish); and Ichushi-Web (Japanese). The titles and abstracts were screened. Full texts were retrieved for publications that studied mechanisms of actions of SDF, including its effects on remineralisation of carious lesions and on cariogenic bacteria. Results: A total of 1,123 publications were identified. Twenty-nine articles were included and they investigated the effect of SDF on cariogenic bacteria and dental hard tissues. Eleven studies investigated the antibacterial properties of SDF. They found that SDF was bactericidal to cariogenic bacteria, mainly Streptococcus mutans. It inhibited the growth of cariogenic biofilms on teeth. Twenty studies reported the remineralisation of demineralised enamel or dentine by SDF. They found that mineral loss of demineralised enamel and dentine was reduced after SDF treatment. A highly mineralised surface rich in calcium and phosphate was formed on arrested carious lesions. Four studies examined the effect of SDF on dentine collagen. They found that SDF inhibited collagenases (matrix metalloproteinases and cysteine cathepsins) and protected dentine collagen from destruction. Conclusion: SDF is a bactericidal agent and reduces the growth of cariogenic bacteria. It inhibits demineralisation and promotes the remineralisation of demineralised enamel and dentine. It also hampers degradation of the dentine collagen.
This study investigated the effect of silver diamine fluoride (SDF) and potassium iodide (KI) treatment on secondary caries prevention and tooth discolouration in glass ionomer cement (GIC) restoration. Cervical GIC restorations were done on 30 premolars with: Group 1, SDF + KI; Group 2, SDF (positive control); Group 3, no treatment (negative control). After cariogenic biofilm challenge, the demineralisation of dentine adjacent to the restoration was evaluated using micro-computed tomography (micro-CT) and Fourier transform infrared (FTIR) spectroscopy. The colour of dentine adjacent to the restoration was assessed using CIELAB system at different time points. Total colour change (∆E) was calculated and was visible if ∆E > 3.7. Micro-CT showed the outer lesion depths for Groups 1, 2 and 3 were 91 ± 7 µm, 80 ± 7 µm and 119 ± 8 µm, respectively (p < 0.001; Group 2 < Group 1 < Group 3). FTIR found that there was a significant difference in amide I-to-hydrogen phosphate ratio among the three groups (p < 0.001; Group 2 < Group 1 < Group 3). ∆E of Groups 1, 2 and 3 after biofilm challenge were 22.5 ± 4.9, 70.2 ± 8.3 and 2.9 ± 0.9, respectively (p < 0.001; Group 3 < Group 1 < Group 2). SDF + KI treatment reduced secondary caries formation on GIC restoration, but it was not as effective as SDF treatment alone. Moreover, a perceptible staining on the restoration margin was observed, but the intensity of discolouration was less than that with solely SDF treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.