Pathologies affecting the posterior segment of the eye are one of the major causes of blindness in developed countries and are becoming more prevalent due to the increase in society longevity. Successful therapy of diseases affecting the back of the eye requires effective concentrations of the active substance maintained during a long period of time in the intraocular target site. Treatment of vitreoretinal diseases often include repeated intravitreous injections that are associated with adverse effects. Local administration of biodegradable microspheres offers an excellent alternative to multiple administrations, as they are able to deliver the therapeutic molecule in a controlled fashion. Furthermore, injection of microparticles is performed without the need for surgical procedures. As most of the retinal diseases are multifactorial, microspheres result especially promising because they can be loaded with more than one active substance and complemented with the inclusion of additives with pharmacological properties. Personalized therapy can be easily achieved by changing the amount of administered microspheres. Contrary to non-biodegradable devices, biodegradable PLA and PLGA microspheres disappear from the site of administration after delivering the drug. Furthermore, microspheres prepared from these mentioned biomaterials are well tolerated after periocular and intravitreal injections in animals and humans. After injection, PLA and PLGA microspheres suffer aggregation behaving like an implant. Biodegradable microspheres are potential tools in regenerative medicine for retinal repair. According to the reported results, presumably a variety of microparticulate formulations for different ophthalmic therapeutic uses will be available in the clinical practice in the near future.
Poly(L-valine-L-proline-L-alanine-L-valine-L-glycine) (VPAVG) is a new kind of proteinaceous polymer belonging to the Elastin-like family. These polymers are based on the recurrence of certain short peptide monomers that are considered as "building blocks" in the natural elastin. This smart thermoresponsive polymer has the ability to self-associate at physiological temperature to form aggregates with about 60% in water. This ability can be harnessed to prepare microparticles loaded with an active substance. The aim of this report is to evaluate, from the results of the experiment conducted, the biocompatibility of microparticles prepared from poly(VPAVG). We have studied the cytotoxic effects of microparticles, edema formation after subcutaneous injection (1 and 2.5 mg) in rats (n = 6), and also intraocular tolerance after the intravitreal injection of 2.5 mg of poly(VPAVG) microparticles into pigmented rabbits (n = 12). The polymer did not induce any cytotoxicity or nonspecific depression of cellular respiration on macrophages under the range of polymer concentrations investigated in this study (20, 30, 40, and 60 mg/mL). We observed no inflammatory response to microparticles after subcutaneous injection in the hind-paw of rats, with no significant differences between the control group (PBS) and experimental groups. Anterior and posterior segment signs were evaluated after intraocular injection of poly(VPAVG) microparticles. Only a few eyes (2/11) of the experimental group presented inflammation signs at day 28 postinjection. Nevertheless, 45% (5/11) of the eyes receiving microparticles showed tractional retinal detachment. The results observed in this work suggested certain fibroblastic activity induced by poly(VPAVG) microparticles after their intraocular injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.