Cryogenic low noise amplifiers based on high electron mobility transistors (HEMTs) are widely used in applications such as radio astronomy, deep space communications, and quantum computing, and the physical mechanisms governing the microwave noise figure are therefore of practical interest. In particular, the contribution of thermal noise from the gate at cryogenic temperatures remains unclear owing to a lack of experimental measurements of thermal resistance under these conditions. Here, we report measurements of gate junction temperature and thermal resistance in a HEMT at cryogenic and room temperatures using a Schottky thermometry method. At temperatures ∼ 20 K, we observe a nonlinear trend of thermal resistance versus power that is consistent with heat dissipation by phonon radiation. Based on this finding, we consider heat transport by phonon radiation at the low-noise bias and liquid helium temperatures and estimate that the thermal noise from the gate is several times larger than previously assumed owing to self-heating. We conclude that without improvements in thermal management, self-heating results in a practical lower limit for microwave noise figure of HEMTs at cryogenic temperatures.
High electron mobility transistors are widely used as microwave amplifiers owing to their low microwave noise figure. Electronic noise in these devices is typically modeled by noise sources at the gate and drain. While consensus exists regarding the origin of the gate noise, that of drain noise is a topic of debate. Here, we report a theory of drain noise as a type of partition noise arising from real-space transfer of hot electrons from the channel to the barrier. The theory accounts for the magnitude and dependencies of the drain temperature and suggests strategies to realize devices with lower noise figure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.