Cadmium is a toxic environmental and industrial pollutant. Cadmium toxicity has been reported to produce biochemical and behavioral dysfunction that may cause adverse effects on several organs including the central nervous system. The present study was designed to investigate the neurotoxic effects of Cadmium Chloride (CdCl2) at three different doses by using different behavioral models. Lipid peroxidation (LPO), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities were also monitored following acute intraperitoneal injection of cadmium. Twenty four adult locally bred Albino Wistar rats were divided into control and 3 test groups (n = 6). Control rats were injected intraperitoneally with saline (0.9% NaCl) and test groups were injected with CdCl2 (1 mg/kg, 2 mg/kg and 3 mg/kg) dissolved in physiological solution. Behavioral activities of rats were monitored after 1 h of cadmium injection. Locomotor activity and depression-like symptoms were measured by Open Field Test (OFT) and Forced Swimming Test (FST) respectively. Anxiety like behavior was monitored using Light-dark Transition (LDT) test and memory functions of rats were assessed by Morris Water Maze test (MWM). In the present study acute cadmium administration dose dependently increased anxiety in rats as compared to control rats. A significant increase in depression-like symptoms was also exhibited by cadmium treated rats. These behavioral dysfunctions may be attributed to the decreased superoxide dismutase (SOD) activity and simultaneously increased brain lipid peroxidation (LPO). Moreover learning and memory assessed by MWM showed dose dependent impairment in memory function in cadmium treated rats as compared to control rats. Acetylcholinesterase (AChE) activity was also decreased in brains of cadmium administered rats. It is suggested in this study that behavioral, biochemical and neurochemical dysfunctions caused by acute cadmium administration occur in a dose dependent manner.
The rotenone-induced animal model of Parkinson’s disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.
Background: Caryota urens is a member of the Arecaceae family and a common plant in the Southeast Asian region. This plant has been reported as an anti-microbial agent in recent years. Thus, we aimed to find out the MIC (minimum inhibitory concentration) against different pathogenic microorganism. Methods: The leaves of C. urens were extracted and fractioned using different reagents (chloroform, n-hexane and carbon tetrachloride). Disc diffusion method was implemented for the assessment of in vitro anti-microbial potency (500 and 250 µg/disc). Result: The entire fraction showed good effect (with the zone of inhibition 19–25 mm) against both gram positive (Bacillus subtilis, Bacillus megaterium, Bacillus cereus, Sarina lutea) and gram negative (Vibrio mimicus, Shigella boydii, Escherichia coli, Pseudomonas aeruginosa) bacterial pathogens and fungal strains (Aspergillus niger, Saccharomyces cerevisiae). The plants also possess effective free radical scavenging potency with an IC50 of 130.32 µg/mL. Conclusion: This finding reflects a link between the presence of anti-oxidative material and a substantial anti-microbial activity, and substantiates all previous claims against C. urens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.