BackgroundThere is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up.MethodsThe miR-21 expression levels were quantified (qRT-PCR) in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361) by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis.ResultsThe expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029).ConclusionsOur data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours.
PTK6, also known as Brk, is highly expressed in over 80% of breast cancers. In the last decade several substrates and interaction partners were identified localising PTK6 downstream of HER receptors. PTK6 seems to be involved in progression of breast tumours, in particular in HER receptor signalling. Here, we show the down-regulation effects of PTK6 in the T47D, BT474 and JIMT-1 breast cancer cell lines. PTK6 knockdown leads to a decreased phosphorylation of HER2, PTEN, MAPK (ERK), p38 MAPK, STAT3 and to a reduced expression of cyclin E. Our findings show that silencing PTK6 impairs the downstream targets of HER receptors and consequently the activation of signalling molecules. Furthermore, lower levels of PTK6 result in reduced migration of T47D and JIMT-1 breast cancer cells. Due to decreased migration, the PTK6 RNA interference might contribute to reduced metastasis and malignant potential of breast cancer cells. Since PTK6 plays an important role in HER receptor signal transduction, its down-regulation might be suitable for future therapy approaches in breast cancer.
Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damageinduced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cellcycle control. Cancer Res; 73(14); 4247-55. Ó2013 AACR.
The tumour suppressor gene (Rb1) is necessary for the maintenance of telomere integrity in osteoblastic cells. We now show that the compaction of telomeric chromatin and the appropriate histone modifications of telomeric DNA are both dependent upon Rb1-mediated transcription of the telomere-derived long non-coding RNA TERRA. Expression of TERRA was reduced in Rb1 haploinsufficient cells, and further decreased by shRNA-mediated reduction of residual Rb1 expression. Restoration of Rb1 levels through lentiviral transduction was sufficient to reestablish both transcription of TERRA and condensation of telomeric chromatin. The human chromosome 15q TERRA promoter contains predicted retinoblastoma control elements, and was able to confer Rb1-dependent transcription upon a promoterless reporter gene. Chromatin immunoprecipitation revealed preferential binding of phosphorylated over non-phosphorylated Rb1 at the TERRA promoter. As Rb1-deficient cells show increased genomic instability we suggest that this novel non-canonical action of Rb1 may contribute to the tumour suppressive actions of Rb1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.