The rapid development of the Internet of Things is affecting the requirements towards wireless vision sensor networks (WVSN). Future smart camera architectures require battery-operated devices to facilitate deployment for scenarios such as industrial monitoring, environmental monitoring and smart city, consequently imposing constraints on the node energy consumption. This paper provides an analysis of the inter-effects between computation and communication energy for a smart camera node. Based on a people counting scenario, we evaluate the trade-off for the node energy consumption with different processing configurations of the image processing tasks, and several communication technologies. The results indicate that the optimal partition between the smart camera node and remote processing is with background modelling, segmentation, morphology and binary compression implemented in the smart camera, supported by Bluetooth Low Energy (BLE) version 5 technologies. The comparative assessment of these results with other implementation scenarios underlines the energy efficiency of this approach. This work changes pre-conceptions regarding design space exploration in WVSN, motivating further investigation regarding the inclusion of intermediate processing layers between the node and the cloud to interlace low-power configurations of communication and processing architectures.
The Internet of Things has grown quickly in the last few years, with a variety of sensing, processing and storage devices interconnected, resulting in high data traffic. While some sensors such as temperature, or humidity sensors produce a few bits of data periodically, imaging sensors output data in the range of megabytes every second. This raises a complexity for battery operated smart cameras, as they would be required to perform intensive image processing operations on large volumes of data, within energy consumption constraints. By using intelligence partitioning we analyse the effects of different partitioning scenarios for the processing tasks between the smart camera node, the fog computing layer and cloud computing, in the node energy consumption as well as the real time performance of the WVSN (Wireless Vision Sensor Node). The results obtained show that traditional design space exploration approaches are inefficient for WVSN, while intelligence partitioning enhances the energy consumption performance of the smart camera node and meets the timing constraints.
Optimising the energy consumption of IoT nodes can be tedious due to the due to complex trade-offs involved between processing and communication. In this article, we investigate the partitioning of processing between the sensor node and a server and study the energy trade-offs involved. We propose a method that provides a trade-off analysis for a given set of constraints and allows for exploring several intelligence partitioning configurations. Furthermore, we demonstrate how this method can be used for the analysis of four design examples with traditional and CNN-based image processing systems, and we also provide an implementation of it on Matlab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.