Atmospheric rivers, or long but narrow regions of enhanced water vapor transport, are an important component of the hydrologic cycle as they are responsible for much of the poleward transport of water vapor and result in precipitation, sometimes extreme in intensity. Despite their importance, much uncertainty remains in the detection of atmospheric rivers in large datasets such as reanalyses and century scale climate simulations. To understand this uncertainty, the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) developed tiered experiments, including the Tier 2 Reanalysis Intercomparison that is presented here. Eleven detection algorithms submitted hourly tags‐‐binary fields indicating the presence or absence of atmospheric rivers‐‐of detected atmospheric rivers in the Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2) and European Centre for Medium‐Range Weather Forecasts' Reanalysis Version 5 (ERA5) as well as six‐hourly tags in the Japanese 55‐year Reanalysis (JRA‐55). Due to a higher climatological mean for integrated water vapor transport in MERRA‐2, atmospheric rivers were detected more frequently relative to the other two reanalyses, particularly in algorithms that use a fixed threshold for water vapor transport. The finer horizontal resolution of ERA5 resulted in narrower atmospheric rivers and an ability to detect atmospheric rivers along resolved coastlines. The fraction of hemispheric area covered by ARs varies throughout the year in all three reanalyses, with different atmospheric river detection tools having different seasonal cycles.
Atmospheric rivers (ARs) are an important component of the hydrological cycle linking moisture sources in lower latitudes to the Antarctic surface mass balance. We investigate AR signatures in the atmospheric vertical profiles at the Dronning Maud Land coast, East Antarctica, using regular and extra radiosonde measurements conducted during the Year of Polar Prediction Special Observing Period November 2018 to February 2019. Prominent AR events affecting the locations of Neumayer and Syowa cause a strong increase in specific humidity extending through the mid-troposphere and a strong low-level jet (LLJ). At Neumayer, the peak in the moisture inversion (up to 4 g kg −1) is observed between 800 and 900 hPa, while the LLJ (up to 32 m s −1) is concentrated below 900 hPa. At Syowa the increase in humidity is less pronounced and peaks near the surface, while there is a substantial increase in wind speed (up to 40 m s −1) between 825 and 925 hPa. Moisture transport (MT) within the vertical profile during the ARs attains a maximum of 100 g kg −1 m s −1 at both locations, and is captured by both ERA-Interim and ERA5 reanalysis data at Neumayer, but is strongly underestimated at Syowa. Composites of the enhanced MT events during 2009−19 show that these events represent an extreme state of the lower-tropospheric profile compared to its median values with respect to temperature, humidity, wind speed and, consequently, MT. High temporal-and vertical-resolution radiosonde observations are important for understanding the contribution of these rare events to the total MT towards Antarctica and improving their representation in models.
The disintegration of the ice shelves along the Antarctic Peninsula have spurred much discussion on the various processes leading to their eventual dramatic collapse, but without a consensus on an atmospheric forcing that could connect these processes. Here, using an atmospheric river detection algorithm along with a regional climate model and satellite observations, we show that the most intense atmospheric rivers induce extremes in temperature, surface melt, sea-ice disintegration, or large swells that destabilize the ice shelves with 40% probability. This was observed during the collapses of the Larsen A and B ice shelves during the summers of 1995 and 2002 respectively. Overall, 60% of calving events from 2000–2020 were triggered by atmospheric rivers. The loss of the buttressing effect from these ice shelves leads to further continental ice loss and subsequent sea-level rise. Under future warming projections, the Larsen C ice shelf will be at-risk from the same processes.
The Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi‐model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA‐2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.
We investigate an intense snowfall event between 15 and 18 February 2011 over the East Antarctic coastal region which contributed to roughly 24% of the annual snow accumulation. The event was previously associated with an atmospheric river, and here we use both Eulerian and Lagrangian analysis to gain an understanding of the processes contributing to the atmospheric river signature. The planetary-scale configuration during the event consisted of a persistent blocking situation resulting in a sustained meridional flow from the sub-tropics to the Antarctic ice sheet between 20 and 50°E. Within this configuration, synoptic-scale cyclogenesis contributed to slantwise ascent of moisture loaded air parcels toward Antarctica. Landfall of this cyclone's warm sector coincided with the onset of Antarctic precipitation. Subsequently, a secondary cyclone developed along a pre-existing baroclinic zone. The rapid intensification and propagation speed of this mesoscale cyclone alongside the warm, moist air mass resulted in strong moisture flux convergence ahead of the cyclone, providing additional poleward moisture transport. The poleward progression of warm moist air and a corresponding decrease of sea-surface temperatures implied downward surface sensible and latent heat fluxes throughout the region of intense poleward moisture, roughly between 40 and 60°S. Hence, moisture uptake via surface evaporation was suppressed between the sub-tropics and the polar continent, favoring long-range transport. Identification of the surface moisture uptake region by tracing changes in moisture in air parcels confirmed the limited uptake of moisture during the poleward transport in this case study, with the primary moisture source for Antarctic precipitation located in the sub-tropics.TERPSTRA ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.