The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.
We have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratios of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20 degrees C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred was noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5-8% for both glycerol and EG even though the IIF temperatures vary from -14 to -50 degrees C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: substantially greater than isotonic in some solutions; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.
We have previously reported [11] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12% respectively even though the IIF temperatures varied from −14° to −41°C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratio of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20°C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred as noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5 to 8% for both glycerol and EG even though the IIF temperatures vary from −14°C to −50°C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: Substantially greater than isotonic in some solution; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.