BackgroundParticulate matter (PM) air pollution has been associated with cardiovascular morbidity and mortality, and elevated blood pressure (BP) is a known risk factor for cardiovascular disease. A small number of studies have investigated the relationship between PM and BP and found mixed results. Evidence suggests that traffic-related air pollution contributes significantly to PM-related cardiovascular effects.ObjectivesWe hypothesized that black carbon (BC), a traffic-related combustion by-product, would be more strongly associated with BP than would fine PM [aerodynamic diameter ≤ 2.5 μm (PM2.5)], a heterogeneous PM mixture, and that these effects would be larger among participants with genetic variants associated with impaired antioxidative defense.MethodsWe performed a repeated-measures analysis in elderly men to analyze associations between PM2.5 and BC exposure and BP using mixed-effects models with random intercepts, adjusting for potential confounders. We also examined statistical interaction between BC and genetic variants related to oxidative stress defense: GSTM1, GSTP1, GSTT1, NQO1, catalase, and HMOX-1.ResultsA 1-SD increase in BC concentration was associated with a 1.5-mmHg increase in systolic BP [95% confidence interval (CI), 0.1–2.8] and a 0.9-mmHg increase in diastolic BP (95% CI, 0.2–1.6). We observed no evidence of statistical interaction between BC and any of the genetic variants examined and found no association between PM2.5 and BP.ConclusionsWe observed positive associations between BP and BC, but not between BP and PM2.5, and found no evidence of effect modification of the association between BC and BP by gene variants related to antioxidative defense.
Objectives Particulate air pollution is associated with cardiovascular events, but the mechanisms are not fully understood. The main objective was to assess the relationship between long-term exposure to traffic-related air pollution and blood pressure (BP). Methods The authors used longitudinal data from 853 elderly men participating in the Veterans Administration Normative Aging Study, followed during 1996–2008. Long-term average exposures to traffic particles were created from daily predictions of black carbon (BC) exposure at the geocoded address of each subject, using a validated spatiotemporal model based on ambient monitoring at 82 Boston-area locations. The authors examined the association of these exposures with BP using a mixed model. The authors included the following covariates: age, body mass index, smoking, alcohol, fasting glucose, creatinine clearance, use of cardiovascular medication, education, census-level poverty, day of week and season of clinical visit. Results The authors found significant positive associations between 1-year average BC exposure and both systolic and diastolic blood pressure. An IQR increase in 1-year average BC exposure (0.32 µg/m3) was associated with a 2.64 mm Hg increase in systolic blood pressure (95% CI 1.47 to 3.80) and a 2.41 mm Hg increase in diastolic blood pressure (95% CI 1.77 to 3.05). Conclusions Long-term exposure to traffic particles is associated with increased BP, which may explain part of the association with myocardial infarctions and cardiovascular deaths reported in cohort studies.
Background: Arsenic, cadmium, mercury, and lead are associated with cardiovascular disease in epidemiologic research. These associations may be mediated by direct effects of the metals on blood pressure (BP) elevation. Manganese is associated with cardiovascular dysfunction and hypotension in occupational cohorts.Objectives: We hypothesized that chronic arsenic, cadmium, mercury, and lead exposures elevate BP and that manganese lowers BP.Methods: We conducted a cross-sectional analysis of associations between toenail metals and BP among older men from the Normative Aging Study (n = 639), using linear regression and adjusting for potential confounders.Results: An interquartile range increase in toenail arsenic was associated with higher systolic BP [0.93 mmHg; 95% confidence interval (CI): 0.25, 1.62] and pulse pressure (0.76 mmHg; 95% CI: 0.22, 1.30). Positive associations between arsenic and BP and negative associations between manganese and BP were strengthened in models adjusted for other toenail metals.Conclusions: Our findings suggest associations between BP and arsenic and manganese. This may be of public health importance because of prevalence of both metal exposure and cardiovascular disease. Results should be interpreted cautiously given potential limitations of toenails as biomarkers of metal exposure.
BackgroundPolycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants, known human lung carcinogens, and potent mammary carcinogens in laboratory animals. However, the association between PAHs and breast cancer in women is unclear. Vehicular traffic is a major ambient source of PAH exposure.ObjectivesOur study aim was to evaluate the association between residential exposure to vehicular traffic and breast cancer incidence.MethodsResidential histories of 1,508 participants with breast cancer (case participants) and 1,556 particpants with no breast cancer (control participants) were assessed in a population-based investigation conducted in 1996–1997. Traffic exposure estimates of benzo[a]pyrene (B[a]P), as a proxy for traffic-related PAHs, for the years 1960–1995 were reconstructed using a model previously shown to generate estimates consistent with measured soil PAHs, PAH–DNA adducts, and CO readings. Associations between vehicular traffic exposure estimates and breast cancer incidence were evaluated using unconditional logistic regression.ResultsThe odds ratio (95% CI) was modestly elevated by 1.44 (0.78, 2.68) for the association between breast cancer and long-term 1960–1990 vehicular traffic estimates in the top 5%, compared with below the median. The association with recent 1995 traffic exposure was elevated by 1.14 (0.80, 1.64) for the top 5%, compared with below the median, which was stronger among women with low fruit/vegetable intake [1.46 (0.89, 2.40)], but not among those with high fruit/vegetable intake [0.92 (0.53, 1.60)]. Among the subset of women with information regarding traffic exposure and tumor hormone receptor subtype, the traffic–breast cancer association was higher for those with estrogen/progesterone-negative tumors [1.67 (0.91, 3.05) relative to control participants], but lower among all other tumor subtypes [0.80 (0.50, 1.27) compared with control participants].ConclusionsIn our population-based study, we observed positive associations between vehicular traffic-related B[a]P exposure and breast cancer incidence among women with comparatively high long-term traffic B[a]P exposures, although effect estimates were imprecise.CitationMordukhovich I, Beyea J, Herring AH, Hatch M, Stellman SD, Teitelbaum SL, Richardson DB, Millikan RC, Engel LS, Shantakumar S, Steck SE, Neugut AI, Rossner P Jr., Santella RM, Gammon MD. 2016. Vehicular traffic–related polycyclic aromatic hydrocarbon exposure and breast cancer incidence: the Long Island Breast Cancer Study Project (LIBCSP). Environ Health Perspect 124:30–38; http://dx.doi.org/10.1289/ehp.1307736
Background Despite studies having consistently linked exposure to single-source polycyclic aromatic hydrocarbons (PAHs) to breast cancer, it is unclear whether single sources or specific groups of PAH sources should be targeted for breast cancer risk reduction. Objectives This study considers the impact on breast cancer incidence from multiple PAH exposure sources in a single model, which better reflects exposure to these complex mixtures. Methods In a population-based case-control study conducted on Long Island, New York (N=1,508 breast cancer cases/1,556 controls), a Bayesian hierarchical regression approach was used to estimate adjusted posterior means and credible intervals (CrI) for the adjusted odds ratios (ORs) for PAH exposure sources, considered singly and as groups: active smoking; residential environmental tobacco smoke (ETS); indoor and outdoor air pollution; and grilled/smoked meat intake. Results Most women were exposed to PAHs from multiple sources, and the most common included active/passive smoking and grilled/smoked food intake. In multiple-PAH source models, breast cancer incidence was associated with residential ETS from a spouse (OR=1.20, 95%CrI=1.03, 1.40) and synthetic firelog burning (OR=1.29, 95%CrI=1.06, 1.57); these estimates are similar, but slightly attenuated, to those from single-source models. Additionally when we considered PAH exposure groups, the most pronounced significant associations included total indoor sources (active smoking, ETS from spouse, grilled/smoked meat intake, stove/fireplace use, OR=1.45, 95%CrI=1.02, 2.04). Conclusions Groups of PAH sources, particularly indoor sources, were associated with a 30–50% increase in breast cancer incidence. PAH exposure is ubiquitous and a potentially modifiable breast cancer risk factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.