Due to a lack of published pharmacokinetic (PK) and/or pharmacodynamic (PD) data, decision-making surrounding appropriate dosing of cannabis used for medical purposes is limited. This multiple-dose study evaluated the safety, tolerability, PK, and PD of Spectrum Yellow oil [20 mg/mL cannabidiol (CBD)/<1 mg/mL ∆9-tetrahydrocannabinol (THC)]. Participants (N=43) were randomized to one of five groups: 120 mg CBD and 5.4 mg THC daily, 240 mg CBD and 10.8 mg THC daily, 360 mg CBD and 16.2 mg THC daily, 480 mg CBD and 21.6 mg THC daily, or placebo. Study medication was administered every 12 hours for seven consecutive days. Treatment-emergent adverse events (TEAEs); plasma and urine concentrations of THC, CBD, and metabolites; and self-reported subjective effects were collected. Nearly all TEAEs (44/45) were of mild or moderate severity; none was serious. The highest incidence of TEAEs (67%) was in the two higher-dose treatment groups. The highest number of TEAEs (17/45) occurred on the first treatment day. Steady-state plasma CBD concentrations were reached by Day 7. On Day 7, CBD exposure showed dose-proportionality (AUC0-t slope=1.03 [0.70, 1.36], Cmax slope=0.92 [0.53, 1.31]). Most plasma THC concentrations were below the limit of quantification. Across Days 1 and 7, there were no consistent differences in subjective effects between placebo and active study medication. A prudent approach to improve tolerability with Spectrum Yellow oil might involve initial doses no higher than 240 mg total CBD and 10.8 mg total THC daily in divided doses, with titration upwards over time as needed based on tolerability.
Purpose Cannabichromene (CBC) is a phytocannabinoid commonly found in cannabis, yet its acute post-dose pharmacokinetics (PK) have not been examined in humans. This is a secondary data analysis from a trial investigating Spectrum Yellow oil, an oral cannabis product used for medical purposes that contained 20 mg cannabidiol (CBD), 0.9 mg Δ9-tetrahydrocannabinol (THC), and 1.1 mg CBC, per 1 mL of oil. Methods Participants (N = 43) were randomized to one of 5 groups: 120 mg CBD, 5.4 mg THC, and 6.6 mg CBC daily; 240 mg CBD, 10.8 mg THC, and 13.2 mg CBC daily; 360 mg CBD, 16.2 mg THC, and 19.8 mg CBC daily; 480 mg CBD, 21.6 mg THC, and 26.4 mg CBC daily; or placebo. Study medication was administered every 12 h for 7 days. Plasma CBC concentrations were analyzed by a validated two-dimensional high-performance liquid chromatography–tandem mass spectrometry assay. Results After a single dose and after the final dose, the Cmax of CBC increased by 1.3–1.8-fold for each twofold increase in dose; the tmax range was 1.6–4.3 h. Based on the ratio of administered CBD, THC, and CBC to the plasma concentration, the dose of CBD was 18 times higher than the dose of CBC, yet the AUC0–t of CBD was only 6.6–9.8-fold higher than the AUC0–t of CBC; the dose of THC was similar to the dose of CBC, yet THC was quantifiable in fewer plasma samples than was CBC. Conclusions CBC may have preferential absorption over CBD and THC when administered together. Trial Registration: Australian New Zealand Clinical Trials Registry #ACTRN12619001450101, registered 18 October 2019.
Introduction: Legalization of medicinal cannabis around the world has led to an increase in the use of commercial cannabis-based products in the community. These cannabis-based products are being used in combination with conventional drugs to treat a variety of health conditions. Moreover, recreational cannabis-based products may be used in combination with other drugs. In this setting, there is increased potential for drug-drug interactions (DDIs) involving commercial cannabis-based products. Since DDIs can lead to serious adverse events, drug regulatory bodies require that every investigational drug be evaluated for DDI potential at metabolic enzymes and transporters. However, this seldom occurs for cannabis-based products due to legislation in many jurisdictions allowing a direct pathway to market. This study aimed to examine the inhibitory potential of three commercially available cannabis-based products at human ATP-binding cassette (ABC) and solute-carrier (SLC) transporters. Materials and Methods: Three commercial cannabis-based products (Spectrum YellowÔ, Tweed Argyle, and Spectrum RedÔ) that contain differing concentrations of cannabidiol (CBD) and D 9-tetrahydrocannabinol (D 9-THC) were evaluated for DDI potential at 12 drug transporters. HEK293 cells or vesicles expressing human ABC transporters (ABCB1, ABCC2, ABCG2, or ABCB11) and SLC transporters (SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLCO1B1, SLCO1B3, SLC47A1, and SLC47A2) were used to measure transporter function. Results: Spectrum Yellow and Tweed Argyle inhibited ABCG2 transporter function. The IC 50 value of Spectrum Yellow based on CBD and D 9-THC content was 4.5 lM for CBD and 0.20 lM for D 9-THC, and the IC 50 value of Tweed Argyle was 9.3 lM for CBD and 6.0 lM for D 9-THC. Tweed Argyle also inhibited ABCB11 transporter function with an IC 50 value of 11.9 lM for CBD and 7.7 lM for D 9-THC. SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 transporter functions were modestly inhibited by high concentrations of the cannabis-based products. The three cannabis-based products did not inhibit ABCB1, ABCC2, SLC47A1, SLC47A2, or SLC22A8 transporters. Discussion: Novel findings were that the cannabis-based products inhibited ABCB11, SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 (although modestly in most instances). Spectrum Yellow and Tweed Argyle potently inhibited ABCG2, and future in vivo DDI studies could be conducted to assess whether cannabis products affect the pharmacokinetics of medications that are ABCG2 substrates.
Due to a lack of published pharmacokinetic (PK) and/or pharmacodynamic (PD) data, informed physician and patient decision-making surrounding appropriate dosing of cannabis for medical purposes is limited. This Phase 1, multiple-dose study evaluated the safety, tolerability, PK, and PD of Spectrum Red softgels (2.5 mg Δ9-tetrahydrocannabinol (THC) and < 0.25 mg cannabidiol (CBD)). Participants (N = 41) were randomized to one of five groups: 5 mg THC and 0.06 mg CBD daily (Treatment A), 10 mg THC and 0.12 mg CBD daily (Treatment B), 15 mg THC and 0.18 mg CBD daily (Treatment C), 20 mg THC and 0.24 mg CBD daily (Treatment D), or placebo. Study medication was administered in divided doses, every 12 hours, approximately 60 minutes after a standardized meal, for seven consecutive days. All treatment-emergent adverse events (TEAEs) (65/65) were of mild to moderate severety; none was serious. The highest number of TEAEs (30/65) occurred on the first day of treatment. The most common TEAEs included somnolence, lethargy, and headache (reported by 8, 7, and 5 participants, respectively). On Day 7, maximum observed plasma concentration of 11-carboxy-THC increased by 2.0- and 2.5-fold as the dose doubled between Treatments A and B and between Treatments B and D, respectively. Mean peak post-treatment ratings of self-reported subjective effects of “feel any effect” and “dazed” differed between Treatment D and placebo on Days 1, 3, and 7. Over a week of twice-daily dosing of Spectrum Red softgels, daily doses of THC up to 20 mg and of CBD up to 0.24 mg were generally safe and became better tolerated after the first day of treatment. A prudent approach to improve tolerability with Spectrum Red softgels might involve initial daily doses no higher than 10 mg THC and 0.12 mg CBD in divided doses, with titration upwards over time as needed based on tolerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.