Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of *2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 lM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 lM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 lM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 lM CBD. The thermotolerance study showed that 40 lM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 lM CBD revealed a maximum life extension of 18% observed at 40 lM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.
Purpose Cannabichromene (CBC) is a phytocannabinoid commonly found in cannabis, yet its acute post-dose pharmacokinetics (PK) have not been examined in humans. This is a secondary data analysis from a trial investigating Spectrum Yellow oil, an oral cannabis product used for medical purposes that contained 20 mg cannabidiol (CBD), 0.9 mg Δ9-tetrahydrocannabinol (THC), and 1.1 mg CBC, per 1 mL of oil. Methods Participants (N = 43) were randomized to one of 5 groups: 120 mg CBD, 5.4 mg THC, and 6.6 mg CBC daily; 240 mg CBD, 10.8 mg THC, and 13.2 mg CBC daily; 360 mg CBD, 16.2 mg THC, and 19.8 mg CBC daily; 480 mg CBD, 21.6 mg THC, and 26.4 mg CBC daily; or placebo. Study medication was administered every 12 h for 7 days. Plasma CBC concentrations were analyzed by a validated two-dimensional high-performance liquid chromatography–tandem mass spectrometry assay. Results After a single dose and after the final dose, the Cmax of CBC increased by 1.3–1.8-fold for each twofold increase in dose; the tmax range was 1.6–4.3 h. Based on the ratio of administered CBD, THC, and CBC to the plasma concentration, the dose of CBD was 18 times higher than the dose of CBC, yet the AUC0–t of CBD was only 6.6–9.8-fold higher than the AUC0–t of CBC; the dose of THC was similar to the dose of CBC, yet THC was quantifiable in fewer plasma samples than was CBC. Conclusions CBC may have preferential absorption over CBD and THC when administered together. Trial Registration: Australian New Zealand Clinical Trials Registry #ACTRN12619001450101, registered 18 October 2019.
Due to a lack of published pharmacokinetic (PK) and/or pharmacodynamic (PD) data, decision-making surrounding appropriate dosing of cannabis used for medical purposes is limited. This multiple-dose study evaluated the safety, tolerability, PK, and PD of Spectrum Yellow oil [20 mg/mL cannabidiol (CBD)/<1 mg/mL ∆9-tetrahydrocannabinol (THC)]. Participants (N=43) were randomized to one of five groups: 120 mg CBD and 5.4 mg THC daily, 240 mg CBD and 10.8 mg THC daily, 360 mg CBD and 16.2 mg THC daily, 480 mg CBD and 21.6 mg THC daily, or placebo. Study medication was administered every 12 hours for seven consecutive days. Treatment-emergent adverse events (TEAEs); plasma and urine concentrations of THC, CBD, and metabolites; and self-reported subjective effects were collected. Nearly all TEAEs (44/45) were of mild or moderate severity; none was serious. The highest incidence of TEAEs (67%) was in the two higher-dose treatment groups. The highest number of TEAEs (17/45) occurred on the first treatment day. Steady-state plasma CBD concentrations were reached by Day 7. On Day 7, CBD exposure showed dose-proportionality (AUC0-t slope=1.03 [0.70, 1.36], Cmax slope=0.92 [0.53, 1.31]). Most plasma THC concentrations were below the limit of quantification. Across Days 1 and 7, there were no consistent differences in subjective effects between placebo and active study medication. A prudent approach to improve tolerability with Spectrum Yellow oil might involve initial doses no higher than 240 mg total CBD and 10.8 mg total THC daily in divided doses, with titration upwards over time as needed based on tolerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.