Comparative analysis of two optical methods-optical coherence tomography (OCT) and optical coherence microscopy (OCM)-was made for vital visualization of plant tissues in tomato ( Lycopersicon esculentum Mill), spiderwort ( Tradescantia pallida (Rose) D. Hunt), orach ( Atriplex sp.), and leaves and seeds of medium starwort ( Stellaria media L.). The obtained OCT-and OCM-images allowed the morphological and functional state of plant tissues to be assessed in vivo. A higher spatial resolution of the OCM method, as compared to OCT method, allowed plant morphological structures to be identified with greater confidence. The morphological and functional state of tissues can be monitored with a time resolution of 1-4 s in intact plants, without removing them from the habitat.
The optical coherence tomography (OCT) capabilities of plants were evaluated using leaves of Tradescantia pallida (Rose) D. Hunt. The internal structure of the leaf tissues was visualized in vivo and the physiological and morphological states of the tissues under different water supply conditions were monitored using OCT. The OCT technique provides non-invasive two-dimensional images directly on intact plants. The acquisition time of a two-dimensional image with a size of 200x200 pixels and a spatial resolution of 15 microm is 1-3 s. It was shown that OCT is a useful tool for monitoring the physiological and morphological states of plant tissues supplied with varying amounts of water and under the influence of different chemical factors.
First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor -the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.