Quantification of cardiac deformation and strain with 3D ultrasound takes considerable research efforts. Nevertheless, a widespread use of these techniques in clinical practice is still held back due to the lack of a solid verification process to quantify and compare performance. In this context, the use of fully synthetic sequences has become an established tool for initial in silico evaluation. Nevertheless, the realism of existing simulation techniques is still too limited to represent reliable benchmarking data. Moreover, the fact that different centers typically make use of in-house developed simulation pipelines makes a fair comparison difficult. In this context, this paper introduces a novel pipeline for the generation of synthetic 3D cardiac ultrasound image sequences. State-of-the art solutions in the fields of electromechanical modeling and ultrasound simulation are combined within an original framework that exploits a real ultrasound recording to learn and simulate realistic speckle textures. The simulated images show typical artifacts that make motion tracking in ultrasound challenging. The ground-truth displacement field is available voxelwise and is fully controlled by the electromechanical model. By progressively modifying mechanical and ultrasound parameters, the sensitivity of 3D strain algorithms to pathology and image properties can be evaluated. The proposed pipeline is used to generate an initial library of 8 sequences including healthy and pathological cases, which is made freely accessible to the research community via our project web-page.
1Purpose: An aortic valve stenosis is an abnormal narrowing of the aortic valve (AV). It impedes blood flow and is often quantified by the geometric orifice area of 10 the AV (AVA) and the pressure drop (PD). Using the Bernoulli equation, a relation between the PD and the effective orifice area (EOA) represented by the area of the vena contracta (VC) downstream of the AV can be derived. We investigate the relation between the AVA and the EOA using patient anatomies derived from cardiac computed tomography (CT) angiography images and computational fluid dynamic 15 (CFD) simulations.Methods: We developed a shape-constrained deformable model for segmenting the AV, the ascending aorta (AA) and the left ventricle (LV) in cardiac CT images. In particular, we designed a structured AV mesh model, trained the model on CT scans, and integrated it with an available model for heart segmentation. The planimetric 20 AVA was determined from the cross-sectional slice with minimum AV opening area.In addition, the AVA was determined as the non-obstructed area along the AV axis by projecting the AV leaflet rims on a plane perpendicular to the AV axis. The flow rate was derived from the LV volume change. Steady-state CFD simulations were performed on the patient anatomies resulting from segmentation. Conclusions:The presented segmentation algorithm allowed to construct detailed 35AV models for 22 patient cases. Because of the crown-like 3D structure of the AV, the planimetric AVA is larger than the projected AVA formed by the free edges of the AV leaflets. The AVA formed by the free edges of the AV leaflets was smaller than the EOA for EOA values < 2.0cm 2 . This contradiction with respect to previous studies that reported the EOA to be always smaller or equal to the geometric AVA 40 2 is explained by the more detailed AV models used within this study.3
Background: Advances in medical imaging, segmentation techniques, and high performance computing have stimulated the use of complex, patient-specific, three-dimensional Computational Fluid Dynamics (CFD) simulations. Patient-specific, CFD-compatible geometries of the aortic valve are readily obtained. CFD can then be used to obtain the patient-specific pressure-flow relationship of the aortic valve. However, such CFD simulations are computationally expensive, and real-time alternatives are desired. Aim: The aim of this work is to evaluate the performance of a meta-model with respect to high-fidelity, three-dimensional CFD simulations of the aortic valve. Methods: Principal component analysis was used to build a statistical shape model (SSM) from a population of 74 iso-topological meshes of the aortic valve. Synthetic meshes were created with the SSM, and steady-state CFD simulations at flow-rates between 50 and 650 mL/s were performed to build a metamodel. The meta-model related the statistical shape variance, and flow-rate to the pressure-drop. Results: Even though the first three shape modes account for only 46% of shape variance, the features relevant for the pressure-drop seem to be captured. The three-mode shape-model approximates the pressure-drop with an average error of 8.8% to 10.6% for aortic valves with a geometric orifice area below 150 mm 2. The proposed methodology was least accurate for aortic valve areas above 150 mm 2. Further reduction to a meta-model introduces an additional 3% error.
Aortic valve stenosis is associated with an elevated left ventricular pressure and transaortic pressure drop. Clinicians routinely use Doppler ultrasound to quantify aortic valve stenosis severity by estimating this pressure drop from blood velocity. However, this method approximates the peak pressure drop, and is unable to quantify the partial pressure recovery distal to the valve. As pressure drops are flow dependent, it remains difficult to assess the true significance of a stenosis for low-flow low-gradient patients. Recent advances in segmentation techniques enable patient-specific Computational Fluid Dynamics (CFD) simulations of flow through the aortic valve. In this work a simulation framework is presented and used to analyze data of 18 patients. The ventricle and valve are reconstructed from 4D Computed Tomography imaging data. Ventricular motion is extracted from the medical images and used to model ventricular contraction and corresponding blood flow through the valve. Simplifications of the framework are assessed by introducing two simplified CFD models: a truncated time-dependent and a steady-state model. Model simplifications are justified for cases where the simulated pressure drop is above 10 mmHg. Furthermore, we propose a valve resistance index to quantify stenosis severity from simulation results. This index is compared to established metrics for clinical decision making, i.e. blood velocity and valve area. It is found that velocity measurements alone do not adequately reflect stenosis severity. This work demonstrates that combining 4D imaging data and CFD has the potential to provide a physiologically relevant diagnostic metric to quantify aortic valve stenosis severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.