Killer-cell Ig-like receptors (KIR) are structurally and functionally diverse, and enable human NK cells to survey the expression of individual HLA class I molecules, often altered in infections and tumors. Multiple events of non-reciprocal recombination have contributed to the rapid diversification of KIR. We show that *4.5% of the individuals of a Caucasoid population bear a recombinant allele of KIR3DP1, officially designed KIR3DP1*004, that associates tightly with gene duplications of KIR3DP1, KIR2DL4 and KIR3DL1/KIR3DS1. The KIR3DP1 gene is normally silent, but the recombinant allele carries a novel promoter sequence and, as a consequence, is transcribed in all tested individuals. Messenger RNA of KIR3DP1*004 is made up of six exons; of these, exons 1-5 are similar to, and spliced like, those encoding the leader peptide and Ig-domains of KIR3D. By contrast, exon 6 is homologous to no other human KIR sequence, but only to possible homologs in chimpanzees and rhesus macaques, and encodes a short hydrophilic tail. The putative KIR3DP1*004 product, like those of the related genes LAIR-2 and LILRA3/ILT6/LIR4, is predicted to be secreted to the extracellular medium rather than anchored to the cell membrane.
BackgroundAdoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations.MethodsIn this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laboratories. OncoScan® formalin fixed paraffin embedded assay data was then analysed for reproducibility of genome-wide copy number, loss of heterozygosity and somatic mutations. Where available, somatic mutation data was compared to data from orthogonal technologies (pyro/sanger sequencing).ResultsCross site comparisons of genome-wide copy number and loss of heterozygosity profiles showed greater than 95% average agreement between sites. Somatic mutations pre-validated by orthogonal technologies showed greater than 90% agreement with OncoScan® somatic mutation calls and somatic mutation concordance between sites averaged 97%.ConclusionsReproducibility of whole-genome copy number, loss of heterozygosity and somatic mutation data using the OncoScan® assay has been demonstrated with comparatively low DNA inputs from a range of highly degraded formalin fixed paraffin embedded samples. In addition, our data shows examples of clinically-relevant aberrations that demonstrate the potential utility of the OncoScan® assay as a robust clinical tool for guiding tumour therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-015-0079-z) contains supplementary material, which is available to authorized users.
This review updates the on-going investigations into KIR genes and their alleles with the main emphasis on what has taken place in this laboratory over the last 3 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.