Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptorpositive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triplenegative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation.Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival
The major histopathological hallmarks of Alzheimer’s disease (AD) include β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Aβ 1–42 (Aβ1-42) has been shown to induce neurotoxicity and secretion of proinflammatory mediators that potentiate neurotoxicity. Proinflammatory and neurotoxic activities of Aβ1-42 were shown to be mediated by interactions with several cell surface receptors, including the chemotactic G protein-coupled N-formyl peptide receptor 2 (FPR2). The present study investigated the impact of a new FPR2 agonist, MR-39, on the neuroinflammatory response in ex vivo and in vivo models of AD. To address this question, organotypic hippocampal cultures from wild-type (WT) and FPR2-deficient mice (knockout, KO, FPR2−/−) were treated with fibrillary Aβ1-42, and the effect of the new FPR2 agonist MR-39 on the release of pro- and anti-inflammatory cytokines was assessed. Similarly, APP/PS1 double-transgenic AD mice were treated for 20 weeks with MR-39, and immunohistological staining was performed to assess neuronal loss, gliosis, and Aβ load in the hippocampus and cortex. The data indicated that MR-39 was able to reduce the Aβ1-42-induced release of proinflammatory cytokines and to improve the release of anti-inflammatory cytokines in mouse hippocampal organotypic cultures. The observed effect was apparently related to the inhibition of the MyD88/TRAF6/NFкB signaling pathway and a decrease in NLRP3 inflammasome activation. Administration of MR-39 to APP/PS1 mice improved neuronal survival and decreased microglial cell density and plaque load.These results suggest that FPR2 may be a promising target for alleviating the inflammatory process associated with AD and that MR-39 may be a useful therapeutic agent for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.