Recent in vivo studies have demonstrated a strong negative correlation between liver triglyceride content and hepatic insulin sensitivity, but a causal relationship remains to be established. We therefore have examined parameters of direct hepatic insulin action on isolated steatotic livers from high-fat (HF)-fed rats compared with standard chow (SC)-fed controls. Direct hepatic action of insulin was assayed in Wistar rats after 6 wk of HF diet by measuring the insulin-induced suppression of epinephrine-induced hepatic glucose output in an isolated liver perfusion system. Insulin-induced activation of glycogen synthase was measured by quantifying the incorporation of radioactive UDP-glucose into glycogen in HF and SC liver lysates. HF diet induced visceral obesity, mild insulin resistance, and hepatic steatosis. Both suppression of epinephrine-induced glycogenolysis and activation of glycogen synthase by insulin were sustained in HF rats; no significant difference from SC controls could be detected. In conclusion, in our model, triglyceride accumulation into the liver was not sufficient to impair direct hepatic insulin action. The data argue for an important role of systemic factors in the regulation of hepatic glucose output and hepatic insulin sensitivity in vivo.
The lipid phosphatase SH2 domain-containing lipid phosphatase (SHIP2) has been implicated in the regulation of insulin sensitivity, but its role in the therapy of insulin-resistant states remains to be defined. Here, we examined the effects of an antisense oligonucleotide (AS) therapy directed against SHIP2 on whole body insulin sensitivity and insulin action in liver and muscle tissue in a dietary rodent model of the metabolic syndrome, the high-fat-fed (HF) rat. Whole body insulin sensitivity was examined in vivo by insulin tolerance tests before and after the intraperitoneal application of an AS directed against SHIP2 (HF-SHIP2-AS) or a control AS (HF-Con-AS) in HF rats. Insulin action in liver and muscle was assayed by measuring the activation of protein kinase B (Akt) and insulin receptor substrate (IRS)-1/2 after a portal venous insulin bolus. SHIP2 mRNA and protein content were quantified in these tissues by real-time PCR and immunoblotting, respectively. In HF-SHIP2-AS, whole body glucose disposal after an insulin bolus was markedly elevated compared with HF-Con-AS. In liver, insulin activated Akt similarly in both groups. In muscle, insulin did not clearly activate Akt in HF-Con-AS animals, whereas insulin-induced Akt phosphorylation was sustained in SHIP2-AS-treated rats. IRS-1/2 activation did not differ between the experimental groups. SHIP2 mRNA and protein content were markedly reduced only in muscle. In standard diet-fed controls, SHIP2-AS reduced SHIP2 protein levels in liver and muscle, but it had no significant effect on insulin sensitivity. We conclude that treatment with SHIP2-AS can rapidly improve muscle insulin sensitivity in dietary insulin resistance. The long-term feasibility of such a strategy should be examined further.
Hepatic glucose release can be reliably measured in a liver slice culture system, and it is regulated by major hormone systems. This method may be helpful for further characterization of direct insulin action and resistance in a complex tissue as the liver; however, pharmacological applications such as the analysis of drug effects on hepatic glucose metabolism can also be envisioned.
The peroxisome-proliferator-activated receptor gamma2 (PPAR gamma2) is a transcriptional key regulator of adipocyte differentiation. PPAR gamma2 can be inactivated by phosphorylation of a serine residue at position 114. A point mutation leading to an amino acid exchange at position 115 (Pro115Gln) was shown to preclude serine phosphorylation and to consecutively accelerate adipocyte differentiation emphasizing the pathophysiological relevance of this mutation. So far, four markedly obese heterozygote carriers of the Pro115Gln mutation (body mass index 37.9-47.3 kgxm (-2)) have been identified in a circumscribed study population. In order to evaluate the epidemiological relevance of the Pro115Gln mutation in morbid obesity we screened the DNA of all subjects with a body mass index greater than 35 kgxm (-2) who had participated in a nationwide German epidemiological field survey. There was no homozygote or heterozygote carrier of the Pro115Gln polymorphism among them. We conclude that the Pro115Gln polymorphism within the PPAR gamma2 gene has no relevant epidemiological impact on morbid obesity in Germany. It needs further investigation whether this polymorphism might play a role in related metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.