Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it at a new location and orientation and asked to mark the place where the cue had been. On some trials the geometry (size, aspect ratio) of the arena was varied between presentation and testing. Responses tended to lie somewhere between a location that maintained fixed distances from nearby walls and a location that maintained fixed ratios of the distances between opposing walls. The former were more common after expansions and for cued locations nearer to the edge while the latter were more common after contractions and for locations nearer to the center. The spatial distributions of responses predicted by various simple geometric models were compared to the data. The best fitting model was one derived from the response properties of 'place cells' in the rat hippocampus, which matches the 'proximities' 1=ðd þ cÞ of the cue to the four walls of the arena, where d is the distance to a wall and c is a global constant. Subjects also tended to adopt the same orientation at presentation and testing, although this was not due to using a view matching strategy, which could be ruled out in 50% of responses. Disoriented responses were most often seen where the cued location was near the center of the arena or where the long axis of a rectangular arena was changed between presentation and testing, suggesting that the geometry of the arena acts as a weak cue to orientation. Overall, the results suggest a process of visual landmark matching to determine orientation, combined with an abstract representation of the proximity of the cued location to the walls of the arena consistent with the neural representation of location in the hippocampus. q
Although FP is not a sensory perception, projection of the sensation into the extrapersonal space, along with the frequent co-occurrence of elementary visual hallucinations and the strong association with visual hallucinations or illusions, supports its hallucinatory nature. FP may be viewed as a 'social' hallucination, involving an area or network specifically activated when a living being is present, independently of any perceptual clue.
Memory for object locations and for events (comprising the receipt of an object) was tested in a case of developmental amnesia with focal hippocampal damage. Tests used virtual reality environments and forced-choice recognition with foils chosen to equalize the performance of control participants across conditions. Memory for the objects received was unimpaired, but the context of their receipt was forgotten. Memory for short lists of object locations was unimpaired when tested from the same viewpoint as presentation but impaired when tested from a shifted viewpoint. Same-view performance was disrupted by changing the background scene. These results are consistent with Jon having preserved matching to fixed sensory-bound representations but impaired reconstructed or manipulable representations underlying shifted-viewpoint recognition and episodic recollection.
Communicative pointing is a human specific gesture which allows sharing information about a visual item with another person. It sets up a three-way relationship between a subject who points, an addressee and an object. Yet psychophysical and neuroimaging studies have focused on non-communicative pointing, which implies a two-way relationship between a subject and an object without the involvement of an addressee, and makes such gesture comparable to touching or grasping. Thus, experimental data on the communicating function of pointing remain scarce. Here, we examine whether the communicative value of pointing modifies both its behavioral and neural correlates by comparing pointing with or without communication. We found that when healthy participants pointed repeatedly at the same object, the communicative interaction with an addressee induced a spatial reshaping of both the pointing trajectories and the endpoint variability. Our finding supports the hypothesis that a change in reference frame occurs when pointing conveys a communicative intention. In addition, measurement of regional cerebral blood flow using H2O15 PET-scan showed that pointing when communicating with an addressee activated the right posterior superior temporal sulcus and the right medial prefrontal cortex, in contrast to pointing without communication. Such a right hemisphere network suggests that the communicative value of pointing is related to processes involved in taking another person's perspective. This study brings to light the need for future studies on communicative pointing and its neural correlates by unraveling the three-way relationship between subject, object and an addressee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.