SUMMARY
Background
Uncertainty shapes our perception of the world and the decisions we make. Two aspects of uncertainty are commonly distinguished: uncertainty in previously acquired knowledge (prior) and uncertainty in current sensory information (likelihood). Previous studies have established that humans can take both types of uncertainty into account, often in a way predicted by Bayesian statistics. However, the neural representations underlying these parameters remain poorly understood.
Results
By varying prior and likelihood uncertainty in a decision-making task while performing neuroimaging in humans, we found that prior and likelihood uncertainty had quite distinct representations. While likelihood uncertainty activated brain regions along the early stages of the visuomotor pathway, representations of prior uncertainty were identified in specialized brain areas outside this pathway, including putamen, amygdala, insula, and orbitofrontal cortex. Furthermore, the magnitude of brain activity in the putamen predicted individuals’ personal tendencies to rely more on either prior or current information.
Conclusions
Our results suggest different pathways by which prior and likelihood uncertainty map onto the human brain, and provide a potential neural correlate for higher reliance on current or prior knowledge. Overall, these findings offer insights into the neural pathways that may allow humans to make decisions close to the optimal defined by a Bayesian statistical framework.
Experiments on humans and other animals have shown that uncertainty due to unreliable or incomplete information affects behavior. Recent studies have formalized uncertainty and asked which behaviors would minimize its effect. This formalization results in a wide range of Bayesian models that derive from assumptions about the world, and it often seems unclear how these models relate to one another. In this review, we use the concept of graphical models to analyze differences and commonalities across Bayesian approaches to the modeling of behavioral and neural data. We review behavioral and neural data associated with each type of Bayesian model and explain how these models can be related. We finish with an overview of different theories that propose possible ways in which the brain can represent uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.