This paper presents a hybrid grasshopper optimization algorithm using a novel decoder and local search to solve instances of the open vehicle routing problem with capacity and distance constraints. The algorithm's decoder first defines the number of vehicles to be used and then it partitions the clients, assigning them to the available routes. The algorithm performs a local search in three neighborhoods after decoding. When a new best solution is found, every route is locally optimized by solving a traveling salesman problem, considering the depot and clients in the route. Three sets containing a total of 30 benchmark problems from the literature were used to test the algorithm. The experiments considered two cases of the problem. In the first, the primary objective is to minimize the total number of vehicles and then the total distance to be traveled. In the second case, the total distance traveled by the vehicles is minimized. The obtained results showed the algorithm's proficient performance. For the first case, the algorithm was able to improve or match the best-known solutions for 21 of the 30 benchmark problems. For the second case, the best-known solutions for 18 of the 30 benchmark problems were found or improved by the algorithm. Finally, a case study from a real-life problem is included.
In all breeding programs, the decision about which individuals to select and intermate to form the next selection cycle is crucial. The improvement of genetic stocks requires considering multiple traits simultaneously, given that economic value and net genetic merits depend on many traits; therefore, with the advance of computational and statistical tools and genomic selection (GS), researchers are focusing on multi-trait selection. Selection of the best individuals is difficult, especially in traits that are antagonistically correlated, where improvement in one trait might imply a reduction in other(s). There are approaches that facilitate multi-trait selection, and recently a Bayesian decision theory (BDT) has been proposed. Parental selection using BDT has the potential to be effective in multi-trait selection given that it summarizes all relevant quantitative genetic concepts such as heritability, response to selection and the structure of dependence between traits (correlation). In this study, we applied BDT to provide a treatment for the complexity of multi-trait parental selection using three multivariate loss functions (LF), Kullback-Leibler (KL), Energy Score, and Multivariate Asymmetric Loss (MALF), to select the best performing parents for the next breeding cycle in two extensive real wheat data sets. Results show that the high ranking lines in genomic estimated breeding value (GEBV) for certain traits did not always have low values for PEL. For both data sets, the KL loss function gave similar importance to all traits including grain yield. In contrast, the Energy Score and MALF gave better performance in 3 of 4 traits that were different than grain yield. The BDT approach should help breeders to decide based not only on the GEBV per se of the parent to be selected, but also on the level of uncertainty according to the Bayesian paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.