Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species-and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-b level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-b after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-b. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans. Cellular & Molecular Immunology
Although thiotrophic symbioses have been intensively studied for the last three decades, nothing is known about the molecular mechanisms of symbiont acquisition. We used the symbiosis between the marine nematode Laxus oneistus and sulfur-oxidizing bacteria to study this process. In this association a monolayer of symbionts covers the whole cuticle of the nematode, except its anterior-most region. Here, we identify a novel Ca 2؉ -dependent mannose-specific lectin that was exclusively secreted onto the posterior, bacterium-associated region of L. oneistus cuticle. A recombinant form of this lectin induced symbiont aggregation in seawater and was able to compete with the native lectin for symbiont binding in vivo. Surprisingly, the carbohydrate recognition domain of this mannose-binding protein was similar both structurally and functionally to a human dendritic cell-specific immunoreceptor. Our results provide a molecular link between bacterial symbionts and host-secreted mucus in a marine symbiosis and suggest conservation in the mechanisms of host-microbe interactions throughout the animal kingdom.Stilbonematinae (Desmodoridae, Chromadoria) (27, 28) are especially abundant in tropical calcareous sands, where an oxidized surface layer overlies a reduced one. In the Belize Barrier Reef, two species, Laxus oneistus and Stilbonema majum, even dominate the nematode fauna of shallow sands. Stilbonematids repeatedly cross the boundary between oxidized and reduced sediment layers and thus represent an ideal substrate for bacteria that require both oxygen and sulfide. The worms, in turn, appear to obtain most of their nutrition by grazing on their symbionts (29).Another peculiar feature of symbiotic marine nematodes is a conspicuous system of glandular sensory organs (GSOs) underlying their cuticle (see Fig. 2D). The GSOs produce a mucus envelope in which symbionts may be embedded. In each GSO the secretory granules accumulate in the canal and are released onto the cuticle surface through a hollow seta (18,19).There is no evidence of vertical transmission of the symbionts, but even very small juveniles carry a complete microbial coat. Colonization of recently hatched or molted stilbonematids must be a rapid process because field collections rarely yielded nonsymbiotic stilbonematids.In L. oneistus, whose bacterial coat is composed of a single phylotype of rod-shaped ␥-Proteobacteria (26, 31, 30), symbiont recruitment must be highly selective. The microbial coat starts with a sharp onset some distance behind the anterior end, and the bacterial rods are aligned perpendicularly to the worm's surface. The absence of symbionts on the anterior region does not correlate with fewer or smaller GSOs or with reduced mucus production.Incubation in D-mannose specifically led to symbiont detachment from nematodes belonging to the genus Laxus but not from S. majum. Furthermore, this monosaccharide was found on the surface of the symbionts, but not on L. oneistus cuticle (22). These data led to the hypothesis that L. oneistus binds its s...
BackgroundReduced microbial diversity has been associated with inflammatory bowel disease (IBD) and probiotic bacteria have been proposed for its prevention and/or treatment. Nevertheless, comparative studies of strains of the same subspecies for specific health benefits are scarce. Here we compared two Bifidobacterium longum ssp. longum strains for their capacity to prevent experimental colitis.MethodsImmunomodulatory properties of nine probiotic bifidobacteria were assessed by stimulation of murine splenocytes. The immune responses to B. longum ssp. longum CCM 7952 (Bl 7952) and CCDM 372 (Bl 372) were further characterized by stimulation of bone marrow-derived dendritic cell, HEK293/TLR2 or HEK293/NOD2 cells. A mouse model of dextran sulphate sodium (DSS)-induced colitis was used to compare their beneficial effects in vivo.ResultsThe nine bifidobacteria exhibited strain-specific abilities to induce cytokine production. Bl 372 induced higher levels of both pro- and anti-inflammatory cytokines in spleen and dendritic cell cultures compared to Bl 7952. Both strains engaged TLR2 and contain ligands for NOD2. In a mouse model of DSS-induced colitis, Bl 7952, but not Bl 372, reduced clinical symptoms and preserved expression of tight junction proteins. Importantly, Bl 7952 improved intestinal barrier function as demonstrated by reduced FITC-dextran levels in serum.ConclusionsWe have shown that Bl 7952, but not Bl 372, protected mice from the development of experimental colitis. Our data suggest that although some immunomodulatory properties might be widespread among the genus Bifidobacterium, others may be rare and characteristic only for a specific strain. Therefore, careful selection might be crucial in providing beneficial outcome in clinical trials with probiotics in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.