This is an expository paper about the fundamental mathematical notion of starshapedness, emphasizing the geometric, analytical, combinatorial, and topological properties of starshaped sets and their broad applicability in many mathematical fields. The authors decided to approach the topic in a very broad way since they are not aware of any related survey-like publications dealing with this natural notion. The concept of starshapedness is very close to that of convexity, and it is needed in fields like classical convexity, convex analysis, functional analysis, discrete, combinatorial and computational geometry, differential geometry, approximation theory, PDE, and optimization; it is strongly related to notions like radial functions, section functions, visibility, (support) cones, kernels, duality, and many others. We present in a detailed way many definitions of and theorems on the basic properties of starshaped sets, followed by survey-like discussions of related results. At the end of the article, we additionally survey a broad spectrum of applications in some of the above mentioned disciplines.
The radial centre of a convex body A in R n is the point in A at which the mean value of distances from the boundary of A, with respect to all directions, attains its maximum. We prove that if A is smooth, then its radial centre is an interior point of A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.