Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-Cov-2) has become a global pandemic. The β-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.
Hydrogels are 3D crosslinked polymer matrices having a colossal tendency to imbibe water and exhibit swelling under physiological conditions without deformation in their hydrophilic network. Hydrogels being biodegradable and biocompatible, gained consideration due to some unique characteristics: responsiveness to external stimuli (pH, temperature) and swelling in aqueous solutions. Hydrogels offer a promising option for various pharmaceutical and biomedical applications, including tissue-specific drug delivery at a predetermined, controlled rate. This article presents a brief review of the recent and fundamental advances to design hydrogels, the swelling and deswelling mechanism, various crosslinking methods and their use as an intelligent carrier in the pharmaceutical field. Recent applications of hydrogels are also briefly discussed and exemplified.
Graphene, the mother of all carbon materials, has unlocked a new era of biomedical nanomaterials due to its exceptional biocompatibility, physicochemical and mechanical properties. It is a single atom thick, nanosized, two-dimensional structure and provides high surface area with adjustable surface chemistry to form hybrids. The present article provides a comprehensive review of ever-expanding application of graphene nanomaterials with different inorganic and organic materials in drug delivery and theranostics. Methods of preparation of nanomaterials are elaborated and biological and physicochemical characteristics of biomedical relevance are also discussed. Graphene form nanomaterials with metallic nanoparticles offer multiscale application. First, graphene act as a platform to attach nanoparticles and provide excellent mechanical strength. Second, graphene improves efficacy of metallic nanoparticles in diagnostic, biosensing, therapeutic and drug delivery application. Graphene-based polymeric nanocomposites find wider application in drug delivery with flexibility to incorporate hydrophilic, hydrophobic, sensitive and macromolecules. In addition, grapheme quantum dots and graphene hybrids with inorganic nanocrystal and carbon nanotubes hybrids have shown interesting properties for diagnosis and therapy. Finally, we have pointed out research trends that may be more common in future for graphene-based nanomaterials.
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.