Based on protein folding considerations, a pentapeptide ligand, CALNN, which converts citrate-stabilized gold nanoparticles into extremely stable, water-soluble gold nanoparticles with some chemical properties analogous to those of proteins, has been designed. These peptide-capped gold nanoparticles can be freeze-dried and stored as powders that can be subsequently redissolved to yield stable aqueous dispersions. Filtration, size-exclusion chromatography, ion-exchange chromatography, electrophoresis, and centrifugation can be applied to these particles. The effect of 58 different peptide sequences on the electrolyte-induced aggregation of the nanoparticles was studied. The stabilities conferred by these peptide ligands depended on their length, hydrophobicity, and charge and in some cases resulted in further improved stability compared with CALNN, yielding detailed design criteria for peptide capping ligands. A simple strategy for the introduction of recognition groups is proposed and demonstrated with biotin and Strep-tag II.
The preparation of materials with aligned porosity in the micrometre range is of technological importance for a wide range of applications in organic electronics, microfluidics, molecular filtration and biomaterials. Here, we demonstrate a generic method for the preparation of aligned materials using polymers, nanoparticles or mixtures of these components as building blocks. Directional freezing is used to align the structural elements, either in the form of three-dimensional porous structures or as two-dimensional oriented surface patterns. This simple technique can be used to generate a diverse array of complex structures such as polymer-inorganic nanocomposites, aligned gold microwires and microwire networks, porous composite microfibres and biaxially aligned composite networks. The process does not involve any chemical reaction, thus avoiding potential complications associated with by-products or purification procedures.
We report here a simple one-step protocol for the preparation of near-monodisperse gold hydrosols in the small size regime (<5 nm). The particle size can be controlled by varying the concentration of the stabilizing polymer, which can be readily displaced by thiol ligands to yield monolayer protected clusters of the usual type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.