Modulation of the properties of membrane ion channels is of fundamental importance for the regulation of neuronal electrical activity and of higher neural functions. Among the many potential molecular mechanisms for modulating the activity of membrane proteins such as ion channels, protein phosphorylation has been chosen by cells to play a particularly prominent part. This is not surprising given the central role of protein phosphorylation in a wide variety of cellular, metabolic, and signaling processes (26, 27, 48). As summarized here, regulation by phosphorylation is not restricted to one or another class of ion channel; rather, many, and perhaps all, ion channels are subject to modulation by phosphorylation. Similarly, a number of different protein kinase signaling pathways can participate in the regulation of ion channel properties, and it is not unusual to find that a particular channel is modulated by several different protein kinases, each influencing channel activity in a unique way. Finally, the biophysical mechanisms of modulation also exhibit a striking diversity that ranges from changes in desensitization rates to shifts in the voltage dependence and kinetics of channel activation and inactivation. The convergence of channel molecular biology with patch-clamp technology has been spectacularly productive, even allowing the identification of particular amino acid residues in ion channel proteins that participate in specific modulatory changes in channel biophysical properties. This task is far from complete, and no doubt there remain surprises in store for us, but nevertheless it is appropriate to ask where we go from here. One important direction will be to relate functional modulation, produced by phosphorylation, to changes in the three-dimensional structure of the ion channel protein. Unfortunately, structural studies of membrane proteins are extremely difficult, and to date there is no high resolution structure available for any ion channel protein. A complementary strategy that is more feasible with current technology is to investigate the ways in which channel modulation contributes to the regulation of cellular physiology. Novel computational approaches are being brought to bear on this complex issue, and their combination with channel molecular biology and biophysics should significantly advance our understanding of molecular mechanisms of neuronal plasticity.
Calmodulin (CaM) was identified as a KCNQ2 and KCNQ3 potassium channel-binding protein, using a yeast two-hybrid screen. CaM is tethered constitutively to the channel, in the absence or presence of Ca2+, in transfected cells and also coimmunoprecipitates with KCNQ2/3 from mouse brain. The structural elements critical for CaM binding to KCNQ2 lie in two conserved motifs in the proximal half of the channel C-terminal domain. Truncations and point mutations in these two motifs disrupt the interaction. The first CaM-binding motif has a sequence that conforms partially to the consensus IQ motif, but both wild-type CaM and a Ca2+-insensitive CaM mutant bind to KCNQ2. The voltage-dependent activation of the KCNQ2/3 channel also shows no Ca2+ sensitivity, nor is it affected by overexpression of the Ca2+-insensitive CaM mutant. On the other hand, KCNQ2 mutants deficient in CaM binding are unable to generate detectable currents when coexpressed with KCNQ3 in CHO cells, although they are expressed and targeted to the cell membrane and retain the ability to assemble with KCNQ3. A fusion protein containing both of the KCNQ2 CaM-binding motifs competes with the full-length KCNQ2 channel for CaM binding and decreases KCNQ2/3 current density in CHO cells. The correlation of CaM binding with channel function suggests that CaM is an auxiliary subunit of the KCNQ2/3 channel.
Alternative exon splicing and reversible protein phosphorylation of large conductance calcium-activated potassium (BK) channels represent fundamental control mechanisms for the regulation of cellular excitability. BK channels are encoded by a single gene that undergoes extensive, hormonally regulated exon splicing. In native tissues BK channels display considerable diversity and plasticity in their regulation by cAMP-dependent protein kinase (PKA). Differential regulation of alternatively spliced BK channels by PKA may provide a molecular basis for the diversity and plasticity of BK channel sensitivities to PKA. Here we demonstrate that PKA activates BK channels lacking splice inserts (ZERO) but inhibits channels expressing a 59-amino acid exon at splice site 2 (STREX-1). Channel activation is dependent upon a conserved C-terminal PKA consensus motif (S869), whereas inhibition is mediated via a STREX-1 exon-specific PKA consensus site. Thus, alternative splicing acts as a molecular switch to determine the sensitivity of potassium channels to protein phosphorylation.Large conductance calcium-and voltage-activated potassium (BK) 1 channels link intracellular chemical signaling events with the electrical properties of excitable cells in the endocrine, nervous, and vascular systems (1-3). BK channels are further potently modulated by reversible protein phosphorylation (4 -7). In native tissues BK channels display considerable diversity and plasticity in their regulation by reversible protein phosphorylation. For example, cAMP-dependent protein kinase (PKA) phosphorylation activates BK channels in smooth muscle cells and many neurones but inhibits channel activity in endocrine cells of the anterior pituitary (5, 7-11). Furthermore, the direction of channel regulation by PKA can be modified during challenges to homeostasis (9 -11).The pore-forming ␣-subunits of BK channels are derived from a single gene (Slo) that undergoes extensive alternative splicing to produce channels with distinct phenotypes (12-15). Importantly, alternative splicing of the ␣-subunit is dynamically regulated in adults, for example during stress or pregnancy (15, 16). Thus the diversity and plasticity of responses to PKA-dependent protein phosphorylation observed between BK channels in native tissues may result either from differential modulation of alternatively spliced BK channel ␣-subunits (12-15) or through their interaction with different signaling complexes and -subunits (17-19).To address whether BK channel alternative splice variants are differentially regulated by PKA-mediated protein phosphorylation, we have examined the regulation of three mouse (mslo) BK channel variants (20 -22) expressed in HEK293 cells. BK channels are regulated by multiple protein kinase signaling pathways (5,19,23,24). We have thus assayed the functional regulation of BK channel splice variants by directly activating PKA that remains closely associated with the channels in excised inside-out patches. EXPERIMENTAL PROCEDURESMolecular and Cell Biology-cDNAs encod...
Summary An understanding of sleep requires the identification of distinct cellular circuits that mediate the action of specific sleep:wake-regulating molecules, but such analysis has been very limited. We identify here a circuit that underlies the wake-promoting effects of octopamine in Drosophila. Using MARCM, we identified the ASM cells in the medial protocerebrum as the wake-promoting octopaminergic cells. We then blocked octopamine signaling in random areas of the fly brain and mapped the post-synaptic effect to insulin-secreting neurons of the pars intercerebralis (PI). These PI neurons show altered potassium channel function as well as an increase in cAMP in response to octopamine, and genetic manipulation of their electrical excitability alters sleep:wake behavior. Effects of octopamine on sleep:wake are mediated by the cAMP-dependent isoform of the OAMB receptor. These studies define the cellular and molecular basis of octopamine action and suggest that the PI is a sleep:wake-regulating neuroendocrine structure like the mammalian hypothalamus.
The human Kv1.5 potassium channel (hKv1.5) contains proline-rich sequences identical to those that bind to Src homology 3 (SH3) domains. Direct association of the Src tyrosine kinase with cloned hKv1.5 and native hKv1.5 in human myocardium was observed. This interaction was mediated by the proline-rich motif of hKv1.5 and the SH3 domain of Src. Furthermore, hKv1.5 was tyrosine phosphorylated, and the channel current was suppressed, in cells coexpressing v-Src. These results provide direct biochemical evidence for a signaling complex composed of a potassium channel and a protein tyrosine kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.