This article presents an analysis of mathematical models that can be used to predict the thermophysiological state of man in different environmental conditions in the development of information systems for its life support. The basic element of all considered models is the equation of heat balance. According to this equation, the total heat transfer of the organism must be equal to its heat output. The article considers continuous and discrete-vascular models, analyzes their advantages and disadvantages. Continuous models are, in essence, a simplified notation of biothermal equations. In these models, the effect of blood flow on each individual vessel is neglected, and the blood supply is averaged over the volume studied. Discrete-vascular models are a set of biothermal equations that describe the blood flow in each individual vessel. Discrete-vascular models of the thermophysiological state of man are not very applicable today, due to the complex and insufficiently studied vascular geometry. More common are continuum models, for the construction of which a multi-compartmental approach is used. As a result, the article presents a comparative table of continuous models and information systems that use these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.