This work provides variation in mechanical properties such as tensile, flexural and impact strength of hybridized kenaf and pineapple leaf fibre-reinforced high-density polyethylene composite. Two or more natural fibres are hybridized to provide an effective means of designing materials for various service requirements. The composite of kenaf/pineapple leaf fibre high-density polyethylene-based hybrid composite with different weight proportion of fibres were prepared. Total overall fibre loading in the composite was kept at 40%. The hybrid composites prepared were subjected to water immersion for 14 days to see how this concept can affect water uptake. At equal percentage ratio of the fibres, hybridization effect was optimized for tensile and flexural test; however, K6P4 gave the optimum impact strength while K3P7 resulted in the least overall water uptake. Strength and modulus values increased with increase in percentage of pineapple leaf fibre in the composite and the higher aspect ratio of kenaf helped in the dispersion of matrix in the composite. Favorable balance between the inherent advantages and disadvantages of these two fibres complemented each other. While pineapple leaf fibre helped the composite in tensile and flexural properties, kenaf provided impact strength and in reduction of water uptake. Dependence of modulus on the percentage of cellulose in natural fibres was clear. Kenaf and pineapple leaf fibre offered tremendous potential for hybridization. SEM was used to describe this interesting phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.