Cerro Quema (Azuero Peninsula, SW Panama) is a high sulfidation epithermal Au-Cu deposit hosted by a dacite dome complex of the Río Quema Formation (Late Campanian to Maastrichtian), a fore-arc basin sequence. Mineral resource estimate (Indicated + Inferred) are 30.86 Mt @ 0.73 g/t Au, containing 728,000 Oz Au (including 76.900 Oz AuEq of Cu ore). Hydrothermal alteration and mineralization are controlled by an E trending regional fault system. Hydrothermal alteration consists of an inner zone of vuggy quartz with locally developed advanced argillic alteration, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. Mineralization produced dissemination and microveinlets of pyrite and minor chalcopyrite, enargite and tennantite, with traces of sphalerite, crosscut by late stage base metal veins. New 40 Ar/ 39 Ar data of igneous rocks combined with biostratigraphic ages of the volcanic sequence indicate a maximum age of Lower Eocene (~55-49 Ma) for the Cerro Quema deposit. It was probably triggered by the emplacement of an underlying porphyry-like intrusion associated with the Valle Rico batholith. The geologic model suggests that in the Azuero Peninsula high sulfidation epithermal mineralization occur in the Cretaceous-Paleogene fore-arc. This consideration should be taken into account when exploring for this deposit type in similar geologic terranes.
The Azuero Peninsula, located in SW Panama, is a region characterized by a long-lived intra-oceanic subduction zone. Volcanism began in Late Cretaceous time, as the result of subduction of the Farallon plate beneath the Caribbean plate. Usually, ancient volcanic arcs related to intra-oceanic subduction zones are not preserved, because they are in areas with difficult access or covered by modern volcanic arc material. However, on the Azuero peninsula, a complete section of the volcanic arc together with arc basement rocks provides the opportunity to study the sedimentation and volcanism in the initial stages of volcanic arc development. The lithostratigraphic unit which records fore-arc evolution is the “Río Quema” Formation (RQF), a volcanic apron composed of volcanic and volcaniclastic sedimentary rocks interbedded with hemipelagic limestones, submarine dacite lava domes, and intruded by basaltic-andesitic dikes. The “Río Quema” Formation, interpreted as a fore-arc basin infilling sequence, lies discordantly on top of arc basement rocks. The exceptionally well exposed arc basement, fore-arc basin, volcanic arc rocks and arc-related intrusive rocks provide an unusual opportunity to study the relationship between volcanism, sedimentation and magmatism during the arc development, with the objective to reconstruct its evolution. The “Río Quema” Formation can be divided into three groups: 1) proximal apron, a sequence dominated by lava flows, interbedded with breccias, mass flows and channel fill, all intruded by basaltic dikes. The rocks represent the nearest materials to the volcanic source, reflecting a coarse sediment supply. This depositional environment is similar to gravel-rich fan deltas and submarine ramps; 2) medial apron, characterized by a volcanosedimentary succession dominated by andesitic lava flows, polymictic volcanic conglomerates and crystal-rich sandstones with minor pelagic sediments and turbidites. These rocks were deposited from high-density turbidity currents and debris flows, directly derived from erupted material and gravitational collapse of an unstable volcanic edifice or volcaniclastic apron; 3) distal apron, a thick succession of sandy to muddy volcaniclastic rocks, interbedded with pelagic limestones and minor andesitic lavas, intruded by dacite domes and by basaltic to andesitic dikes. Bedforms and fossils suggest a quiet, relatively deep-water environment characterized by settling of clay and silt (claystone, siltstone) and by dilute turbidity currents of reworked volcaniclastic detritus. The timing of the initial stages of the volcanic arc has been constrained through a biostratigraphic study, using planktonic foraminifera and radiolarian species. The fossil assemblage indicates that the age of the “Río Quema” Formation ranges from Late Campanian to Maastrichtian, providing a good constraint for the development of the volcanic arc and volcaniclastic apron, during the initial stages of an intra-oceanic subduction zone.
Germanium, gallium and indium are in high demand due to their growing usage in high-tech and green-tech applications. However, the mineralogy and the mechanisms of concentration of these critical elements in different types of hydrothermal ore deposits remain poorly constrained. We investigated the mineralogical distribution of Ge, Ga and In at the Mt Carlton high-sulfidation epithermal deposit in NE Australia, using electron probe microanalysis and laser ablation inductively-coupled plasma mass spectrometry. Parageneses from which selected minerals were analyzed include: Stage 1 acid sulfate alteration (alunite), Stage 2A high-sulfidation enargite mineralization (enargite, argyrodite, sphalerite, pyrite, barite), Stage 2B intermediate-sulfidation sphalerite mineralization (sphalerite, pyrite, galena) and Stage 3 hydrothermal void fill (dickite). Moderate to locally high concentrations of Ga were measured in Stage 1 alunite (up to 339 ppm) and in Stage 3 dickite (up to 150 ppm). The Stage 2A ores show enrichment in Ge, which is primarily associated with argyrodite (up to 6.95 wt % Ge) and Ge-bearing enargite (up to 2189 ppm Ge). Co-existing sphalerite has comparatively low Ge content (up to 143 ppm), while Ga (up to 1181 ppm) and In (up to 571 ppm) are higher. Sphalerite in Stage 2B contains up to 611 ppm Ge, 2829 ppm Ga and 2169 ppm In, and locally exhibits fine colloform bands of an uncharacterized Zn-In mineral with compositions close to CuZn 2 (In,Ga)S 4 . Barite, pyrite and galena which occur in association with Stage 2 mineralization were found to play negligible roles as carriers of Ge, Ga and In at Mt Carlton. Analyzed reference samples of enargite from seven similar deposits worldwide have average Ge concentrations ranging from 12 to 717 ppm (maximum 2679 ppm). The deposits from which samples showed high enrichment in critical elements in this study are all hosted in stratigraphic sequences that locally contain carbonaceous sedimentary rocks. In addition to magmatic-hydrothermal processes, such rocks could potentially be important for the concentration of critical elements in high-sulfidation epithermal deposits.
Cerro Quema is a high sulfidation epithermal Au-Cu deposit with a measured, indicated and inferred resource of 35.98 Mt. @ 0.77 g/t Au containing 893,600 oz. Au (including 183,930 oz. Au equiv. of Cu ore). It is characterized by a large hydrothermal alteration zone which is interpreted to represent the lithocap of a porphyry system. The innermost zone of the lithocap is constituted by vuggy quartz with advanced argillic alteration locally developed on its margin, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. The mineralization occurs in the form of disseminations and microveinlets of pyrite, chalcopyrite, enargite, tennantite, and trace sphalerite, crosscut by quartz, barite, pyrite, chalcopyrite, sphalerite and galena veins.Microthermometric analyses of two phase (L + V) secondary fluid inclusions in igneous quartz phenocrysts in vuggy quartz and advanced argillically altered samples indicate low temperature (140-216°C) and low salinity (0.5-4.8 wt% NaCl eq.) fluids, with hotter and more saline fluids identified in the east half of the deposit (Cerro Quema area).Stable isotope analyses (S, O, H) were performed on mineralization and alteration minerals, including pyrite, chalcopyrite, enargite, alunite, barite, kaolinite, dickite and vuggy quartz. The range of δ 34 S of sulfides is from − 4.8 to − 12.7‰, whereas δ 34 S of sulfates range from 14.1 to 17.4‰. The estimated δ 34 S ΣS of the hydrothermal fluid is − 0.5‰. Within the advanced argillic altered zone the δ 34 S values of sulfides and sulfates are interpreted to reflect isotopic equilibrium at temperatures of~240°C. The δ 18 O values of vuggy quartz range from 9.0 to 17.5‰, and the δ 18 O values estimated for the vuggy quartz-forming fluid range from − 2.3 to 3.0‰, indicating that it precipitated from mixing of magmatic fluids with surficial fluids. The δ 18 O of kaolinite ranges from 12.7 to 18.1‰ and δD from − 103.3 to − 35.2‰, whereas the δ 18 O of dickite varies between 12.7 and 16.3‰ and δD from − 44 to − 30. Based on δ 18 O and δD, two types of kaolinite/dickite can be distinguished, a supergene type and a hypogene type. Combined, the analytical data indicate that the Cerro Quema deposit formed from magmatic-hydrothermal fluids derived from a porphyry copper-like intrusion located at depth likely towards the east of the deposit. The combination of stable isotope geochemistry and fluid inclusion analysis may provide useful exploration vectors for porphyry copper targets in the high sulfidation/lithocap environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.