Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.
Nanopyramid light emitting diodes ͑LEDs͒ have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. ͑In,Ga͒N quantum well growth occurs primarily on the six ͕1101͖ semipolar facets of each of the nanopyramids, while coherent ͑In,Ga͒N quantum dots with heights of up to ϳ20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy ͑TEM͒ indicates that the ͑In,Ga͒N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the ͑In,Ga͒N quantum wells and GaN cladding layers grown at 650-780°C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.
Increasing the luminance of white LEDs to the 200 Mnit level and beyond, opens a completely new design space for a wide range of lighting applications, by allowing significant reductions in optics and luminaire size as well as costs. Moreover, new applications, such as dynamic beam steering, are enabled by the ability to create arrays of densely packed, individually addressable high‐luminance emitters. The development of such high‐luminance LEDs requires improvements in all LED technology elements. In this paper, we discuss recent advances in epitaxy, die, phosphor, and package technology that are critical to achieving these benefits.
(In, Ga)N nanostructures show great promise as the basis for next generation LED lighting technology, for they offer the possibility of directly converting electrical energy into light of any visible wavelength without the use of down-converting phosphors. In this paper, three-dimensional computation of the spatial distribution of the mechanical and electrical equilibrium in nanoheterostructures of arbitrary topologies is used to elucidate the complex interactions between geometry, epitaxial strain, remnant polarization, and piezoelectric and dielectric contributions to the self-induced internal electric fields. For a specific geometry-nanorods with pyramidal caps-we demonstrate that by tuning the quantum well to cladding layer thickness ratio, h(w)/h(c), a minimal built-in electric field can be experimentally realized and canceled, in the limit of h(w)/h(c) = 1.28, for large h(c) values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.