Modern techniques of gene cloning have identified the CesA genes as encoding the probable catalytic subunits of the plant CelS, the cellulose synthase enzyme complex visualized in the plasma membrane as rosettes. At least 10 CesA isoforms exist in Arabidopsis and have been shown by mutant analyses to play distinct role/s in the cellulose synthesis process. Functional specialization within this family includes differences in gene expression, regulation and, possibly, catalytic function. Current data points towards some CesA isoforms potentially being responsible for initiation or elongation of the recently identified sterol beta-glucoside primer within different cell types, e.g. those undergoing either primary or secondary wall cellulose synthesis. Different CesA isoforms may also play distinct roles within the rosette, and there is some circumstantial evidence that CesA genes may encode the catalytic subunit of the mixed linkage glucan synthase or callose synthase. Various other proteins such as the Korrigan endocellulase, sucrose synthase, cytoskeletal components, Rac13, redox proteins and a lipid transfer protein have been implicated to be involved in synthesizing cellulose but, apart from CesAs, only Korrigan has been definitively linked with cellulose synthesis. These proteins should prove valuable in identifying additional CelS components.
Cellulose synthase (CesA) proteins are components of CesA complexes (rosettes) and are thought to catalyze the chain elongation step in glucan polymerization. Little is understood about rosette assembly, including how CesAs interact with each other or with other components within the complexes. The first conserved region at the N terminus of plant CesA proteins contains two putative zinc fingers that show high homology to the RING-finger motif. We show that this domain in GhCesA1 can bind two atoms of Zn 2؉ , as predicted by its structure. Analysis in the yeast two-hybrid system indicates that the N-terminal portions of cotton fiber GhCesA1 and GhCesA2 containing these domains can interact to form homo-or heterodimers. Although Zn 2؉ binding occurs only when the protein is in the reduced form, biochemical analyses show that under oxidative conditions, the GhCesA1 zinc-finger domain and also the full-length protein dimerize via intermolecular disulfide bonds, indicating CesA dimerization can be regulated by redox state. We also provide evidence that the herbicide CGA 325615 (Syngenta, Basel), which inhibits synthesis of crystalline cellulose and leads to a disruption of rosette architecture, may affect the oxidative state of the zinc-finger domain that is necessary for rosette stability. Taken together, these results support a model in which at least part of the process of rosette assembly and function may involve oxidative dimerization between CesA subunits.
We isolated a cDNA encoding a 568-amino acid, heat-stressinduced peptidyl prolyl isomerase belonging to the FK506-bindingprotein (FKBP) family. The open reading frame encodes for a peptidyl prolyl isomerase that possesses three FKBP-12-like domains, a putative tetratricopeptide motif, and a calmodulin-binding domain. Specific antibodies showed that the open reading frame encodes a heat-induced 77-kD protein, the wheat FKBP77 (wFKBP77), which exhibits 84% identity with the wFKBP73 and 42% identity with the human FKBP59. Because of the high similarity in sequence to wFKBP73, wFKBP77 was designated as the heat-induced isoform. The wFKBP77 mRNA steady-state level was 14-fold higher at 37°C than at 25°C. The wFKBP77 transcript abundance was the highest in mature embryos that had imbibed and 2-d-old green shoots exposed to 37°C, and decreased to 6% in 6-d-old green shoots. The transcript level returned to the level detected at 25°C after recovery of the embryos for 90 min at 25°C. We compared wFKBP73 and wFKBP77 with the heat-shock proteins having cognate and heatstress-induced counterparts.
Little is known about the assembly and turnover of cellulose synthase complexes commonly called rosettes. Recent work indicates that rosette assembly could involve the dimerization of CesA (cellulose synthase catalytic subunit) proteins regulated by the redox state of the CesA zinc-binding domain (ZnBD). Several studies in the 1980s led to the suggestion that synthase complexes may have very short half-lives in vivo, but no recent work has directly addressed this issue. In the present work, we show that the half-life of cotton fiber GhCesA1 protein is <30 min in vivo, far less than the average membrane protein. We also show that the reduced monomer of GhCesA1 ZnBD is rapidly degraded when exposed to cotton fiber extracts, whereas the oxidized dimer is resistant to degradation. Low rates of degradation activity were detected in vitro by using extracts from fibers harvested during primary cell-wall formation, but activity increased markedly during transition to secondary cell-wall synthesis. In vitro degradation of reduced GhCesA1 ZnBD is inhibited by proteosome inhibitor MG132 and also by E64 and EGTA, suggesting that proteolysis is initiated by cysteine protease activity rather than the proteosome. We used a yeast two-hybrid system to identify a putative cotton fiber metallothionein and to confirm it as a protein that could interact with the GhCesA1 ZnBD. A model is proposed wherein active cellulose synthase complexes contain CesA proteins in dimerized form, and turnover and degradation of the complexes are mediated through reductive zinc insertion by metallothionein and subsequent proteolysis involving a cysteine protease.cell wall ͉ protein turnover ͉ rosette ͉ zinc finger
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.