A non-linear ܴܶܪܵ mathematical model was used to study the dynamics of drinking epidemic. We discussed the existence and stability of the drinking-free and endemic equilibria. The drinking-free equilibrium was locally asymptotically stable if ܴ ൏ 1 and unstable if ܴ 1. Global stability of drinking-free and endemic equilibria were also considered in the model, using Lassalle's invariance principle of Lyapunov functions. Numerical simulations were conducted to confirm our analytic results. Our findings was that, reducing the contact rate between the non-drinkers and heavy drinkers, increasing the number of drinkers that go into treatment and educating drinkers to refrain from drinking can be useful in combating the drinking epidemic.
COVID-19 remains the concern of the globe as governments struggle to defeat the pandemic. Understanding the dynamics of the epidemic is as important as detecting and treatment of infected individuals. Mathematical models play a crucial role in exploring the dynamics of the outbreak by deducing strategies paramount for curtailing the disease. The research extensively studies the SEQIAHR compartmental model of COVID-19 to provide insight into the dynamics of the disease by underlying tailored strategies designed to minimize the pandemic. We first studied the noncontrol model’s dynamic behaviour by calculating the reproduction number and examining the two nonnegative equilibria’ existence. The model utilizes the Castillo-Chavez method and Lyapunov function to investigate the global stability of the disease at the disease-free and endemic equilibrium. Sensitivity analysis was carried on to determine the impact of some parameters on R 0 . We further examined the COVID model to determine the type of bifurcation that it exhibits. To help contain the spread of the disease, we formulated a new SEQIAHR compartmental optimal control model with time-dependent controls: personal protection and vaccination of the susceptible individuals. We solved it by utilizing Pontryagin’s maximum principle after studying the dynamical behaviour of the noncontrol model. We solved the model numerically by considering different simulation controls’ pairing and examined their effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.