COVID-19 remains the concern of the globe as governments struggle to defeat the pandemic. Understanding the dynamics of the epidemic is as important as detecting and treatment of infected individuals. Mathematical models play a crucial role in exploring the dynamics of the outbreak by deducing strategies paramount for curtailing the disease. The research extensively studies the SEQIAHR compartmental model of COVID-19 to provide insight into the dynamics of the disease by underlying tailored strategies designed to minimize the pandemic. We first studied the noncontrol model’s dynamic behaviour by calculating the reproduction number and examining the two nonnegative equilibria’ existence. The model utilizes the Castillo-Chavez method and Lyapunov function to investigate the global stability of the disease at the disease-free and endemic equilibrium. Sensitivity analysis was carried on to determine the impact of some parameters on
R
0
. We further examined the COVID model to determine the type of bifurcation that it exhibits. To help contain the spread of the disease, we formulated a new SEQIAHR compartmental optimal control model with time-dependent controls: personal protection and vaccination of the susceptible individuals. We solved it by utilizing Pontryagin’s maximum principle after studying the dynamical behaviour of the noncontrol model. We solved the model numerically by considering different simulation controls’ pairing and examined their effectiveness.
In this research article, a model for the transmission dynamics of haemorrhagic conjunctivitis disease is presented. The tool of dynamical system is employed in investigating the potency of the spreading of the epidemic. The analysis revealed the likelihood of the epidemic to spread when the basic reproduction number exceeds one. The model is reformulated as optimal control problem to assess the effectiveness of the proposed control strategy. Maximum Principle was employed to derive the necessary conditions for the existence of optimal control. Numerical solution of the optimality was derived and computed to investigate the optimum control strategy that would be efficacious to be implemented in reducing the number of exposed and infected individuals. Stochastic version of the model is deduced by introducing stochastic perturbations in the deterministic one. Numerical simulations are provided to illustrate the differences in the dynamics of the models and to understand the epidemic phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.