In this research article, a model for the transmission dynamics of haemorrhagic conjunctivitis disease is presented. The tool of dynamical system is employed in investigating the potency of the spreading of the epidemic. The analysis revealed the likelihood of the epidemic to spread when the basic reproduction number exceeds one. The model is reformulated as optimal control problem to assess the effectiveness of the proposed control strategy. Maximum Principle was employed to derive the necessary conditions for the existence of optimal control. Numerical solution of the optimality was derived and computed to investigate the optimum control strategy that would be efficacious to be implemented in reducing the number of exposed and infected individuals. Stochastic version of the model is deduced by introducing stochastic perturbations in the deterministic one. Numerical simulations are provided to illustrate the differences in the dynamics of the models and to understand the epidemic phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.