Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya's northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector.
Electrical mini-grids can provide electrification to rural communities far from the national network. However the benefits of such schemes are disputed. We observed changes in two matched trading-centres in Makueni County, Kenya, neither of which were initially electrified. During the study a solar photovoltaic mini-grid scheme (13.5 kWp) was constructed in one of the trading-centres. After electrification there were relative increases in the number of businesses and business income. Comparing the households in the areas around the trading centres, perceived wealth increased more around the electrified trading centre. Qualitative interviews indicated improvements in service provision by the local school and health centre. The co-operative set up to run the mini-grid was free to set its own kWh tariff and chose to reduce it to a level that covers operating costs and would recover 70% of the initial investment interest-free. However, the tariff finally agreed is higher than the national grid tariff, which would be difficult to achieve if the mini-grid was not owned by and run for the benefit of the local community. Overall, we found that the mini-grid had a positive effect over background development, recovered some of its cost and charged a higher tariff than the national rate.
This paper presents results covering the efficiency of appliances to support reduce power needs in both mini grids and upgradeable solar home systems. In addition the research has compared the efficacy of DC vs AC mini grids at different scales. In general, the results indicated that DC mini grids could compete well at sites with a smaller geographical footprint, providing efficient appliances are integrated at system implementation. At the higher ‘tiers’ of electrification, we also present results and experiences from the five e4D solar photovoltaics (PV) mini-grid projects in Kenya and Uganda. The work includes analysis of community engagement, electrical load characterisation, and system operation of the mini grids in rural settings. The results indicate that energy consumption varies significantly between the sites, associated with socio-economic factors, whilst all the villages’ trading centres have experienced varying levels of business growth. Overall outcomes from this research provide clear indications that mini-grid interventions not only invigorate rural communities by enhancing education and health provisions, but are also associated with growth in existing businesses and the creation of new businesses. Therefore, it is recommended that where needed, rural electrification policies be amended to give priority to facilitate and attract investment in decentralized mini grids.
15Rural electrification in remote areas of developing countries has several challenges 16 which hinders energy access to the population. For instance the extension of the 17 national grid to provide electricity in these areas is largely not viable. The Kenyan 18 government has put a target to achieve universal energy access by the year 2020. In 19 order to realize this objective, focus is being shifted to establishing off-grid power 20 stations in rural areas. 21Among rural areas to be electrified, Habaswein is a settlement in Kenya's North 22Eastern region without connection to the National Power Grid where Kenya Power 23 installed a stand alone hybrid mini-grid. 24Based on field observations, power generation data analysis, evaluation of the 25 potential energy resource and simulations, this research intends to evaluate the 26 performance of the Habaswein mini-grid and optimize the existing hybrid 27 generation system to enhance its reliability and reduce the operation costs. 28The result will be a suggestion of how Kenyan rural areas could be sustainably 29 electrified by using renewable energy based off-grid power stations. It will 30 contribute to bridge the research gap currently existing on that area, and it will be 31 a vital tool to researchers, implementers and the policy makers in energy sector. 32
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.