Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya's northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector.
The governments of developing countries struggle to guarantee the universal access to electricity on their territory and 1.2 billion people are still without any service, especially in remote areas. Hybrid mini-grids can be an effective solution since they exploit local renewable resources integrated with energy storage devices, reduce the use of fuel generators, and defer the construction of long and expensive grids until the growth of demand makes it profitable. Off-grid mini-grids are typically operated with simple load-following dispatching strategies, but predictive approaches can provide better performances, although at the expense of additional computational requirements. This paper investigates the benefits of using rolling-horizon dispatching strategies during the mini-grid design stage, also comparing how the optimal size of components is affected by several technical and economical parameters. Moreover, we propose the use of a stochastic sizing procedure that captures the uncertainties related to the load, to the renewable generation, and to the time required for the fuel procurement and delivery. A case study with real load data collected from an existing mini-grid placed in Habaswein, Kenya, is presented and discussed. The optimal sizing of some
In order to successfully deploy a large number of decentralized energy systems in developing countries, it is necessary to standardize effective methodologies and procedures to develop off-grid/mini-grid systems. Considering that the energy need assessment provides inputs and assumptions used in business modelling and mini-grid design, the accuracy of its results directly affects the technical and financial feasibility studies. Thus, the approach for applying a proven methodology for the energy need assessment of rural communities is aimed at obtaining reliable input data for the mini-grid development. This helps in reducing both the financial challenges by mitigating the uncertainties in electricity demand and the technical challenges by contributing to adequately size off-grid power generation systems, with a view to boost toward a common overall objective of mini-grid’s optimization methods and tools. Hence, taking into consideration that target communities differ in terms of needs and context conditions, the proposed paper describes an inclusive methodology that can be adapted case-by-case. It provides an effective applied solution the lack of proven guidelines from project developers or literature, giving priority to data collection methods able to achieve a large sample representative of the market, with high accuracy in estimating the energy consumptions from electricity substitutes.
15Rural electrification in remote areas of developing countries has several challenges 16 which hinders energy access to the population. For instance the extension of the 17 national grid to provide electricity in these areas is largely not viable. The Kenyan 18 government has put a target to achieve universal energy access by the year 2020. In 19 order to realize this objective, focus is being shifted to establishing off-grid power 20 stations in rural areas. 21Among rural areas to be electrified, Habaswein is a settlement in Kenya's North 22Eastern region without connection to the National Power Grid where Kenya Power 23 installed a stand alone hybrid mini-grid. 24Based on field observations, power generation data analysis, evaluation of the 25 potential energy resource and simulations, this research intends to evaluate the 26 performance of the Habaswein mini-grid and optimize the existing hybrid 27 generation system to enhance its reliability and reduce the operation costs. 28The result will be a suggestion of how Kenyan rural areas could be sustainably 29 electrified by using renewable energy based off-grid power stations. It will 30 contribute to bridge the research gap currently existing on that area, and it will be 31 a vital tool to researchers, implementers and the policy makers in energy sector. 32
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.