Background: Emergence of antibiotic resistance is a global public health concern. The relationships between antibiotic use, the gut community composition, normal physiology and metabolism, and individual and public health are still being defined. Shifts in composition of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) after antibiotic treatment are not well-understood. Methods: This project used next-generation sequencing, custom-built metagenomics pipeline and differential abundance analysis to study the effect of antibiotic monotherapy on resistome and taxonomic composition in the gut of Balb/c mice infected with E. coli via transurethral catheterization to investigate the evolution and emergence of antibiotic resistance. Results: There is a longitudinal decrease of gut microbiota diversity after antibiotic treatment. Various ARGs are enriched within the gut microbiota despite an overall reduction of the diversity and total amount of bacteria after antibiotic treatment. Sometimes treatment with a specific class of antibiotics selected for ARGs that resist antibiotics of a completely different class (e.g. treatment of ciprofloxacin or fosfomycin selected for cepA that resists ampicillin). Relative abundance of some MGEs increased substantially after antibiotic treatment (e.g. transposases in the ciprofloxacin group). Conclusions: Antibiotic treatment caused a remarkable reduction in diversity of gut bacterial microbiota but enrichment of certain types of ARGs and MGEs. These results demonstrate an emergence of cross-resistance as well as a profound change in the gut resistome following oral treatment of antibiotics.
The rapid expansion of transcriptomics and affordability of next-generation sequencing (NGS) technologies generate rocketing amounts of gene expression data across biology and medicine, including cancer research. Concomitantly, many bioinformatics tools were developed to streamline gene expression and quantification. We tested the concordance of NGS RNA sequencing (RNA-seq) analysis outcomes between two predominant programs for read alignment, HISAT2, and STAR, and two most popular programs for quantifying gene expression in NGS experiments, edgeR and DESeq2, using RNA-seq data from breast cancer progression series, which include histologically confirmed normal, early neoplasia, ductal carcinoma in situ and infiltrating ductal carcinoma samples microdissected from formalin fixed, paraffin embedded (FFPE) breast tissue blocks. We identified significant differences in aligners’ performance: HISAT2 was prone to misalign reads to retrogene genomic loci, STAR generated more precise alignments, especially for early neoplasia samples. edgeR and DESeq2 produced similar lists of differentially expressed genes, with edgeR producing more conservative, though shorter, lists of genes. Gene Ontology (GO) enrichment analysis revealed no skewness in significant GO terms identified among differentially expressed genes by edgeR versus DESeq2. As transcriptomics of FFPE samples becomes a vanguard of precision medicine, choice of bioinformatics tools becomes critical for clinical research. Our results indicate that STAR and edgeR are well-suited tools for differential gene expression analysis from FFPE samples.
Introduction According to the Centers for Disease Control’s 2015 Hospital Acquired Infection Hospital Prevalence Survey, 1 in 31 hospital patients was infected with at least one nosocomial pathogen while being treated for unrelated issues. Many studies associate antibiotic administration with nosocomial infection occurrence. However, to our knowledge, there is little to no direct evidence of antibiotic administration selecting for nosocomial opportunistic pathogens. Aim This study aims to confirm gut microbiota shifts in an animal model of antibiotic treatment to determine whether antibiotic use favors pathogenic bacteria. Methodology We utilized next-generation sequencing and in-house metagenomic assembly and taxonomic assignment pipelines on the fecal microbiota of a urinary tract infection mouse model with and without antibiotic treatment. Results Antibiotic therapy decreased the number of detectable species of bacteria by at least 20-fold. Furthermore, the gut microbiota of antibiotic treated mice had a significant increase of opportunistic pathogens that have been implicated in nosocomial infections, like Acinetobacter calcoaceticus/baumannii complex, Chlamydia abortus, Bacteroides fragilis, and Bacteroides thetaiotaomicron. Moreover, antibiotic treatment selected for antibiotic resistant gene enriched subpopulations for many of these opportunistic pathogens. Conclusions Oral antibiotic therapy may select for common opportunistic pathogens responsible for nosocomial infections. In this study opportunistic pathogens present after antibiotic therapy harbored more antibiotic resistant genes than populations of opportunistic pathogens before treatment. Our results demonstrate the effects of antibiotic therapy on induced dysbiosis and expansion of opportunistic pathogen populations and antibiotic resistant subpopulations of those pathogens. Follow-up studies with larger samples sizes and potentially controlled clinical investigations should be performed to confirm our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.