Cassava is a key food security crop in Central Africa, but its production depends largely on the use of local farmers’ varieties characterized by inherently low yield which is compounded by generally high susceptibility to various growth and yield-limiting pests and diseases. Improved cassava genotypes have demonstrated the potential to substantially improve cassava’s contribution to food security and the development of the cassava industry and the improvement of nutrition status elsewhere in Western Africa. Eleven improved cassava genotypes were compared with a local landrace (LMR) used as a check under field conditions over two years in eight locations, grouped in four agro-ecologies in Cameroon. Pest and disease abundance/incidence and damage severity were evaluated. At harvest, root yield and carotenoid content were measured. Best linear unbiased predictors showed the lowest breeding value for LMR with the cassava mosaic virus disease (+ 66.40 ± 2.42) compared with 1.00 ± 0.02% for the most susceptible improved genotype. Two genotypes (I010040-27 and I011797) stood out for having higher predicted fresh root yield means which were at least 16 times greater compared with LMR. Predicted total carotenoid content was the highest (+ 5.04 ± 0.17) for improved genotype I070593 compared with LMR which showed the lowest (− 3.90 ± 0.06%) and could contribute to the alleviation of vitamin A deficiency from cassava-based food systems. Diffusion of high-yielding and nutritious genotypes could alleviate food and nutritional security in Central Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.