Resumen-Este artículo consiste en el desarrollo de un sistema integrado con tecnología DSP para ser aplicado a un sistema multi-sensorial (es decir, nariz electrónica). La idea de este estudio fue mejorar la eficiencia de estos sistemas multisensoriales en aplicaciones portátiles, usando diferentes algoritmos para clasificar tres clases de compuestos volátiles detectados por una matriz de sensores de gases químicos. El software CodeComposer Studio (CCS) fue acoplado con Matlab para la programación de la tarjeta DSP TMS320F28335 de Texas Instruments. Los resultados se obtuvieron a partir de muestras de vino de tres denominaciones diferentes (es decir, manzana, rojo y casillero), que luego fueron clasificadas mediante algoritmos de procesamiento (redes neuronales artificiales). El sistema fue validado mediante la técnica de análisis de componentes principales (ACP), para verificar la reproducibilidad y selectividad del sistema de medición. En los resultados se logró un 83,4 % de tasa de éxito en la calificación de las medidas utilizando DSP Hardware,a través de la implementación de una Red NeuronalArtificial (RNA). Palabras clave-Sensor de gases, adquisición de datos, procesamiento, Filtros digitales, Redes neuronales, PCA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.