We have studied the effect of the administration of two doses of melatonin (melatonin 100 and melatonin 200 microg/kg bw) on diabetes and oxidative stress experimentally induced by the injection of streptozotocin (STZ) in female Wistar rats. STZ was injected as a single dose (60 mg/kg i.p. in buffered citrate solution, pH 4.0) and melatonin (melatonin 100, 100 microg/kg/day i.p.; melatonin 200, 200 microg/kg/day i.p.) beginning 3 days before diabetes induction and continuing until the end of the study (8 weeks). The parameters analysed to evaluate oxidative stress and the diabetic state were a) for oxidative stress, changes of lipoperoxides (i.e., malondialdehyde, MDA) in plasma and erythrocytes and the changes in reduced glutathione (GSH) in erythrocytes and b) for diabetes, changes in glycemia, lipids (triglycerides: TG; total cholesterol: TC; HDL-cholesterol, HDL-c), percentage of glycosylated hemoglobin (Hb%), and plasma fructosamine. The injection of STZ caused significant increases in the levels of glycemia, percentage of glycosylated hemoglobin, fructosamine, cholesterol, triglycerides, and lipoperoxides in plasma and erythrocytes, whereas it decreased the levels of HDL-c and the GSH content in erythrocytes. The melatonin 100 dose reduced significantly all these increases, except the percentage of glycosylated hemoglobin. With regard to the decreases of plasma HDL-c and GSH content in erythrocytes, this melatonin dose returned them to normal levels. The melatonin 200 dose produced similar changes, though the effects were especially noticeable in the decrease of glycemia (55% vs. diabetes), percentage of hemoglobin (P < 0.001 vs diabetes), and fructosamine (31% vs. diabetes). This dose also reversed the decreases of HDL-c and GSH in erythrocytes. Both doses of melatonin caused significant reduction of the percentage of glycosylated hemoglobin in those groups that were non-diabetic. These illustrate the protective effect of melatonin against oxidative stress and the severity of diabetes induced by STZ. In particular, this study confirms two facts: 1) the powerful antioxidant action of this pineal indole and 2) the importance of the severity of oxidative stress to maintain hyperglycemia and protein glycosylation, two pathogenetic cornerstones indicative of diabetic complications. Melatonin reduces remarkably the degree of lipoperoxidation, hyperglycemia, and protein glycosylation, which gives hope to a promising perspective of this product, together with other biological antioxidants, in the treatment of diabetic complications where oxidative stress, either in a high or in a low degree, is present.
The aims of the present study were first to compare the effects of melatonin and vitamin E on the cholestasis syndrome and their protective effect on liver injury, and second, to evaluate the activity of antioxidant enzymes after treatment with these antioxidant drugs. Cholestasis was achieved in adult male Wistar rats by double ligature and section of the extra-hepatic biliary duct. Hepatic and plasma oxidative stress markers were evaluated by changes in the amount of lipid peroxides, measured as malondialdehyde (MDA) and reduced glutathione (GSH) in plasma and homogenates of hepatic tissue. Serum bilirubin, alkaline phosphatase (AP), and gamma-glutamyl-transpeptidase (GGT) were used to evaluate the severity of cholestasis, and serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were used to evaluate the hepatic injury. Both vitamin E and melatonin were administrated 1 day before and 7 days after bile duct ligation. Acute ligation of the bile duct was accompanied by a significant increased in MDA and a decrease in GSH levels in both plasma and liver, as well as a significant reduction in antioxidant enzymes activities. The overall analysis of both treatments showed that melatonin (500 microg/kg daily) offered significantly better protection against cholestasis and a superior protective effect on hepatic injury than did vitamin E (15 mg/kg daily). Although vitamin E treatment resulted in a reduction of parameters of oxidative stress, the results were significantly better after a much lower daily dose of melatonin. Moreover, melatonin treatment was associated with a significant recovery of antioxidative enzymes. In conclusion, the present paper demonstrates a correlation between the intensity of biliary tract obstruction and increased free radical generation, as well as a direct correlation between the level of oxidative stress and the biochemical markers of liver injury. Melatonin (at a much lower dose than vitamin E) was much more efficient than vitamin E in reducing the negative parameters of cholestasis, the degree of oxidative stress and provided a significantly greater hepatoprotective effect against the liver injury secondary to the acute ligation of the biliary duct.
Huntington’s disease (HD) is an inheritable autosomal-dominant disorder whose causal mechanisms remain unknown. Experimental models have begun to uncover these pathways, thus helping to understand the mechanisms implicated and allowing for the characterization of potential targets for new therapeutic strategies. 3-Nitropropionic acid is known to produce in animals behavioural, biochemical and morphologic changes similar to those occurring in HD. For this reason, this phenotypic model is gaining attention as a valuable tool to mimick this disorder and further developing new therapies. In this review, we will focus on the past and present research of this molecule, to finally bring a perspective on what will be next in this promising field of study.
Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.