Objectives Information on the recently COVID‐19‐associated pulmonary aspergillosis (CAPA) entity is scarce. We describe eight CAPA patients, compare them to colonised ICU patients with coronavirus disease 2019 (COVID‐19), and review the published literature from Western countries. Methods Prospective study (March to May, 2020) that included all COVID‐19 patients admitted to a tertiary hospital. Modified AspICU and European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria were used. Results COVID‐19‐associated pulmonary aspergillosis was diagnosed in eight patients (3.3% of 239 ICU patients), mostly affected non‐immunocompromised patients (75%) with severe acute respiratory distress syndrome (ARDS) receiving corticosteroids. Diagnosis was established after a median of 15 days under mechanical ventilation. Bronchoalveolar lavage was performed in two patients with positive Aspergillus fumigatus cultures and galactomannan (GM) index. Serum GM was positive in 4/8 (50%). Thoracic CT scan findings fulfilled EORTC/MSG criteria in one case. Isavuconazole was used in 4/8 cases. CAPA‐related mortality was 100% (8/8). Compared with colonised patients, CAPA subjects were administered tocilizumab more often (100% vs. 40%, p = .04), underwent longer courses of antibacterial therapy (13 vs. 5 days, p = .008), and had a higher all‐cause mortality (100% vs. 40%, p = .04). We reviewed 96 similar cases from recent publications: 59 probable CAPA (also putative according modified AspICU), 56 putative cases and 13 colonisations according AspICU algorithm; according EORTC/MSG six proven and two probable. Overall, mortality in the reviewed series was 56.3%. Conclusions COVID‐19‐associated pulmonary aspergillosis must be considered a serious and potentially life‐threatening complication in patients with severe COVID‐19 receiving immunosuppressive treatment.
We have studied the effect of the administration of two doses of melatonin (melatonin 100 and melatonin 200 microg/kg bw) on diabetes and oxidative stress experimentally induced by the injection of streptozotocin (STZ) in female Wistar rats. STZ was injected as a single dose (60 mg/kg i.p. in buffered citrate solution, pH 4.0) and melatonin (melatonin 100, 100 microg/kg/day i.p.; melatonin 200, 200 microg/kg/day i.p.) beginning 3 days before diabetes induction and continuing until the end of the study (8 weeks). The parameters analysed to evaluate oxidative stress and the diabetic state were a) for oxidative stress, changes of lipoperoxides (i.e., malondialdehyde, MDA) in plasma and erythrocytes and the changes in reduced glutathione (GSH) in erythrocytes and b) for diabetes, changes in glycemia, lipids (triglycerides: TG; total cholesterol: TC; HDL-cholesterol, HDL-c), percentage of glycosylated hemoglobin (Hb%), and plasma fructosamine. The injection of STZ caused significant increases in the levels of glycemia, percentage of glycosylated hemoglobin, fructosamine, cholesterol, triglycerides, and lipoperoxides in plasma and erythrocytes, whereas it decreased the levels of HDL-c and the GSH content in erythrocytes. The melatonin 100 dose reduced significantly all these increases, except the percentage of glycosylated hemoglobin. With regard to the decreases of plasma HDL-c and GSH content in erythrocytes, this melatonin dose returned them to normal levels. The melatonin 200 dose produced similar changes, though the effects were especially noticeable in the decrease of glycemia (55% vs. diabetes), percentage of hemoglobin (P < 0.001 vs diabetes), and fructosamine (31% vs. diabetes). This dose also reversed the decreases of HDL-c and GSH in erythrocytes. Both doses of melatonin caused significant reduction of the percentage of glycosylated hemoglobin in those groups that were non-diabetic. These illustrate the protective effect of melatonin against oxidative stress and the severity of diabetes induced by STZ. In particular, this study confirms two facts: 1) the powerful antioxidant action of this pineal indole and 2) the importance of the severity of oxidative stress to maintain hyperglycemia and protein glycosylation, two pathogenetic cornerstones indicative of diabetic complications. Melatonin reduces remarkably the degree of lipoperoxidation, hyperglycemia, and protein glycosylation, which gives hope to a promising perspective of this product, together with other biological antioxidants, in the treatment of diabetic complications where oxidative stress, either in a high or in a low degree, is present.
The aims of the present study were first to compare the effects of melatonin and vitamin E on the cholestasis syndrome and their protective effect on liver injury, and second, to evaluate the activity of antioxidant enzymes after treatment with these antioxidant drugs. Cholestasis was achieved in adult male Wistar rats by double ligature and section of the extra-hepatic biliary duct. Hepatic and plasma oxidative stress markers were evaluated by changes in the amount of lipid peroxides, measured as malondialdehyde (MDA) and reduced glutathione (GSH) in plasma and homogenates of hepatic tissue. Serum bilirubin, alkaline phosphatase (AP), and gamma-glutamyl-transpeptidase (GGT) were used to evaluate the severity of cholestasis, and serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were used to evaluate the hepatic injury. Both vitamin E and melatonin were administrated 1 day before and 7 days after bile duct ligation. Acute ligation of the bile duct was accompanied by a significant increased in MDA and a decrease in GSH levels in both plasma and liver, as well as a significant reduction in antioxidant enzymes activities. The overall analysis of both treatments showed that melatonin (500 microg/kg daily) offered significantly better protection against cholestasis and a superior protective effect on hepatic injury than did vitamin E (15 mg/kg daily). Although vitamin E treatment resulted in a reduction of parameters of oxidative stress, the results were significantly better after a much lower daily dose of melatonin. Moreover, melatonin treatment was associated with a significant recovery of antioxidative enzymes. In conclusion, the present paper demonstrates a correlation between the intensity of biliary tract obstruction and increased free radical generation, as well as a direct correlation between the level of oxidative stress and the biochemical markers of liver injury. Melatonin (at a much lower dose than vitamin E) was much more efficient than vitamin E in reducing the negative parameters of cholestasis, the degree of oxidative stress and provided a significantly greater hepatoprotective effect against the liver injury secondary to the acute ligation of the biliary duct.
Insulin resistance, or the relative inability of insulin to facilitate the disposal of glucose in tissues, is considered to be a risk factor for both diabetes and coronary heart disease (CHD). In 1988 ªSyndrome Xº was [1] first described as a cluster of pathophysiologic phenomena including insulin resistance, glucose intolerance, dyslipidemia, and abdominal obesity.The relation between diet and chronic disease is well established, although there is debate over the details of this relation. In general, high intakes of dietary fat have been associated with obesity and its comorbid conditions, including heart disease and diabetes [2]. All these factors are related to the globalization of the ªWesternº lifestyle and dietary habits. Insulin resistance usually precedes the diagnosis of Type II (non-insulin-dependent) diabetes mellitus by Diabetologia (2001) Abstract Aims/hypothesis. Insulin resistance usually precedes the diagnosis of Type II (non-insulin-dependent) diabetes mellitus. However, in most patients, the clinical expression of the disease could be prevented by dietary and lifestyle changes. We investigated the effects of a diet enriched in monounsaturated fatty acids (Mediterranean diet) and a low fat, high-carbohydrate diet on in vivo and in vitro glucose metabolism in 59 young subjects (30 men and 29 women). Methods. We carried out an intervention dietary study with a saturated fat phase and two randomized-crossover dietary periods: a high-carbohydrate diet and a Mediterranean diet for 28 days each. We analysed the plasma lipoproteins fractions, free fatty acids, insulin sensitivity and glucose uptake in isolated monocytes at the end of the three dietary periods.Results. In comparison to the saturated fat diet, the CHO and Mediterranean diets induced a decrease of LDL-cholesterol (p < 0.001) and HDL-cholesterol (p < 0.001). Steady-state plasma glucose decreased (p = 0.023) and basal and insulin-stimulated 2-deoxiglucose uptake in peripheral monocytes increased in both diets (CHO and Mediterranean), (p = 0.007) indicating an improvement in insulin sensitivity. Fasting free fatty acids plasma values were correlated positively with steady state plasma glucose (r = 0.45; p < 0.0001). In addition, there was an inverse correlation between the mean glucose of the steady state plasma glucose period and logarithmic values of basal (r = ±0.34; p = 0.003) and insulin stimulated glucose uptake in monocytes (r = ±0.32; p = 0.006). Conclusion/interpretation. Isocaloric substitution of carbohydrates and monounsaturated fatty acids for saturated fatty acids improved insulin sensitivity in vivo and in vitro, with an increase in glucose disposal. Both diets are an adequate alternatives for improving glucose metabolism in healthy young men and women. [Diabetologia (2001
The effect of melatonin (1 mg/kg BW i.p./day) on the oxidative changes produced by 3-nitropropionic acid (20 mg/kg BW/day for 4 days) in rat striatal and cortical synaptosomes was investigated. The effects of 3-nitropropionic acid were evaluated as changes in the quantity of lipid peroxidation products, protein carbonyl groups and superoxide dismutase and succinate dehydrogenase activities. 3-Nitropropionic acid caused a rise in lipid peroxidation levels and protein carbonyls content whereas it induced a reduction in the activity of succinate dehydrogenase and triggered an enhancement in superoxide dismutase activity. These changes were prevented by previous administration of melatonin. Our results reveal: (i) 3-nitropropionic acid induces a status of oxidative stress in some brain regions of the Wistar rat; (ii) melatonin prevents the deleterious effects induced by the acid. In conclusion, the results show the ability of melatonin to modify the neural response to 3-nitropropionic acid with the protective mechanism likely involving the antioxidative processes of melatonin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.